首页> 外文期刊>Proteins: Structure, Function, and Genetics >A divide-and-conquer approach to determine the Pareto frontier for optimization of protein engineering experiments
【24h】

A divide-and-conquer approach to determine the Pareto frontier for optimization of protein engineering experiments

机译:分治法确定蛋白质工程实验的帕累托前沿

获取原文
获取原文并翻译 | 示例
           

摘要

In developing improved protein variants by site-directed mutagenesis or recombination, there are often competing objectives that must be considered in designing an experiment (selecting mutations or breakpoints): stability versus novelty, affinity versus specificity, activity versus immunogenicity, and so forth. Pareto optimal experimental designs make the best trade-offs between competing objectives. Such designs are not "dominated"; that is, no other design is better than a Pareto optimal design for one objective without being worse for another objective. Our goal is to produce all the Pareto optimal designs (the Pareto frontier), to characterize the trade-offs and suggest designs most worth considering, but to avoid explicitly considering the large number of dominated designs. To do so, we develop a divide-and-conquer algorithm, Protein Engineering Pareto FRontier (PEPFR), that hierarchically subdivides the objective space, using appropriate dynamic programming or integer programming methods to optimize designs in different regions. This divide-and-conquer approach is efficient in that the number of divisions (and thus calls to the optimizer) is directly proportional to the number of Pareto optimal designs. We demonstrate PEPFR with three protein engineering case studies: site-directed recombination for stability and diversity via dynamic programming, site-directed mutagenesis of interacting proteins for affinity and specificity via integer programming, and site-directed mutagenesis of a therapeutic protein for activity and immunogenicity via integer programming. We show that PEPFR is able to effectively produce all the Pareto optimal designs, discovering many more designs than previous methods. The characterization of the Pareto frontier provides additional insights into the local stability of design choices as well as global trends leading to trade-offs between competing criteria.
机译:在通过定点诱变或重组开发改良的蛋白质变体时,在设计实验(选择突变或断点)时通常必须考虑竞争性目标:稳定性与新颖性,亲和力与特异性,活性与免疫原性等。帕累托最优实验设计可以在竞争目标之间取得最佳平衡。这种设计不是“主导”的。也就是说,对于一个物镜,没有其他设计比帕累托最优设计更好,而对于另一个物镜则不差。我们的目标是产生所有帕累托最优设计(帕累托边界),以权衡取舍并提出最值得考虑的设计,但避免明确考虑大量主导设计。为此,我们开发了分而治之的算法,Protein Engineering Pareto FRontier(PEPFR),该算法使用适当的动态编程或整数编程方法对目标空间进行分层,以优化不同区域的设计。这种分而治之的方法之所以有效,是因为划分的数量(因而需要优化程序)与帕累托最优设计的数量成正比。我们通过三个蛋白质工程案例研究证明PEPFR:通过动态编程进行稳定性和多样性的定点重组;通过整数编程进行相互作用蛋白的亲和力和特异性的定点诱变;以及对于治疗蛋白的活性和免疫原性的定点诱变通过整数编程。我们证明,PEPFR能够有效地产生所有帕累托最优设计,比以前的方法发现更多的设计。帕累托边界的特征为设计选择的局部稳定性以及导致竞争标准之间权衡的全球趋势提供了更多见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号