...
首页> 外文期刊>Proteins: Structure, Function, and Genetics >FiberDock: Flexible induced-fit backbone refinement in molecular docking.
【24h】

FiberDock: Flexible induced-fit backbone refinement in molecular docking.

机译:FiberDock:分子对接中灵活的诱导拟合主链改进。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Upon binding, proteins undergo conformational changes. These changes often prevent rigid-body docking methods from predicting the 3D structure of a complex from the unbound conformations of its proteins. Handling protein backbone flexibility is a major challenge for docking methodologies, as backbone flexibility adds a huge number of degrees of freedom to the search space, and therefore considerably increases the running time of docking algorithms. Normal mode analysis permits description of protein flexibility as a linear combination of discrete movements (modes). Low-frequency modes usually describe the large-scale conformational changes of the protein. Therefore, many docking methods model backbone flexibility by using only few modes, which have the lowest frequencies. However, studies show that due to molecular interactions, many proteins also undergo local and small-scale conformational changes, which are described by high-frequency normal modes. Here we present a new method, FiberDock, for docking refinement which models backbone flexibility by an unlimited number of normal modes. The method iteratively minimizes the structure of the flexible protein along the most relevant modes. The relevance of a mode is calculated according to the correlation between the chemical forces, applied on each atom, and the translation vector of each atom, according to the normal mode. The results show that the method successfully models backbone movements that occur during molecular interactions and considerably improves the accuracy and the ranking of rigid-docking models of protein-protein complexes. A web server for the FiberDock method is available at: http://bioinfo3d.cs.tau.ac.il/FiberDock.
机译:结合后,蛋白质发生构象变化。这些变化通常会阻止刚体对接方法根据其蛋白质的未结合构象预测复合物的3D结构。处理蛋白质主链灵活性是对接方法学的主要挑战,因为主链灵活性为搜索空间增加了大量自由度,因此大大增加了对接算法的运行时间。正常模式分析允许将蛋白质的灵活性描述为离散运动(模式)的线性组合。低频模式通常描述蛋白质的大规模构象变化。因此,许多对接方法仅通过使用频率最低的几种模式来建模主干灵活性。然而,研究表明,由于分子之间的相互作用,许多蛋白质也经历了局部和小规模的构象变化,这由高频正态模式描述。在这里,我们提出了一种新的方法FiberDock,用于对接优化,该方法通过无限数量的正常模式来建模主干灵活性。该方法沿着最相关的模式迭代地使柔性蛋白质的结构最小化。模式的相关性是根据法向模式,根据施加在每个原子上的化学力与每个原子的平移矢量之间的相关性来计算的。结果表明,该方法成功地模拟了分子相互作用期间发生的骨架运动,并大大提高了蛋白质-蛋白质复合物的刚性对接模型的准确性和排名。用于FiberDock方法的Web服务器位于:http://bioinfo3d.cs.tau.ac.il/FiberDock。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号