首页> 外文期刊>Protein Science: A Publication of the Protein Society >Optimization of rotamers prior to template minimization improves stability predictions made by computational protein design
【24h】

Optimization of rotamers prior to template minimization improves stability predictions made by computational protein design

机译:在模板最小化之前对旋转异构体进行优化可改善通过蛋白质设计计算得出的稳定性预测

获取原文
获取原文并翻译 | 示例
           

摘要

Computational protein design (CPD) predictions are highly dependent on the structure of the input template used. However, it is unclear how small differences in template geometry translate to large differences in stability prediction accuracy. Herein, we explored how structural changes to the input template affect the outcome of stability predictions by CPD. To do this, we prepared alternate templates by Rotamer Optimization followed by energy Minimization (ROM) and used them to recapitulate the stability of 84 protein G domain 1 mutant sequences. In the ROM process, side-chain rotamers for wild-type (WT) or mutant sequences are optimized on crystal or nuclear magnetic resonance (NMR) structures prior to template minimization, resulting in alternate structures termed ROM templates. We show that use of ROM templates prepared from sequences known to be stable results predominantly in improved prediction accuracy compared to using the minimized crystal or NMR structures. Conversely, ROM templates prepared from sequences that are less stable than the WT reduce prediction accuracy by increasing the number of false positives. These observed changes in prediction outcomes are attributed to differences in side-chain contacts made by rotamers in ROM templates. Finally, we show that ROM templates prepared from sequences that are unfolded or that adopt a nonnative fold result in the selective enrichment of sequences that are also unfolded or that adopt a nonnative fold, respectively. Our results demonstrate the existence of a rotamer bias caused by the input template that can be harnessed to skew predictions toward sequences displaying desired characteristics.
机译:计算蛋白设计(CPD)预测高度依赖于所用输入模板的结构。但是,尚不清楚模板几何形状的小差异如何转化为稳定性预测精度的大差异。在本文中,我们探讨了输入模板的结构变化如何影响CPD预测稳定性的结果。为此,我们先通过Rotamer Optimization准备了备用模板,然后通过能量最小化(ROM)将其用于概括84个蛋白G结构域1突变序列的稳定性。在ROM过程中,在模板最小化之前,针对晶体或核磁共振(NMR)结构优化了野生型(WT)或突变序列的侧链旋转异构体,从而形成了称为ROM模板的替代结构。我们显示,与使用最小化的晶体或NMR结构相比,使用从已知为稳定结果的序列制备的ROM模板主要可以提高预测精度。相反,由比WT不稳定的序列准备的ROM模板通过增加假阳性的数量而降低了预测准确性。这些观察到的预测结果变化归因于ROM模板中旋转异构体在侧链接触方面的差异。最后,我们显示了由未折叠或采用非天然折叠的序列制备的ROM模板分别选择性富集了也已展开或采用非天然折叠的序列。我们的结果证明了由输入模板引起的旋转误差的存在,可以利用该误差将预测偏向显示所需特征的序列。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号