首页> 外文期刊>Progress in Polymer Science >Graphene-DNA hybrid materials: Assembly, applications, and prospects
【24h】

Graphene-DNA hybrid materials: Assembly, applications, and prospects

机译:石墨烯-DNA杂化材料:组装,应用和前景

获取原文
获取原文并翻译 | 示例
           

摘要

Among the carbon-based nanomaterials such as carbon nanotubes, fullerenes, graphene and nanodiamonds, graphene received recently widespread attention owing to its exceptional structural, electronic and mechanical properties and potential applications in various domains. However, all currently known forms of graphene materials are not well dispersible or soluble in most common solvents. This limitation deters to explore the chemistry of graphene at the molecular level and its nanobio device applications. One well known solution to this problem is the use of dispersing agents such as polymers, biopolymers, or surfactants in conjunction with the appropriate experimental conditions. Among the various biomolecules, deoxyribonucleic acid (DNA) has emerged as an appealing biomacro-molecule for functional materials due to its biocompatibility and renewability in addition to its very interesting double helix structure, which guarantees a range of unique properties that are difficult to detect in other molecules and polymers. Hence, the combination of graphene (a carbon-based nanomaterial), showing exceptional electronic properties, and DNA (a nanostructured biomolecule), having extraordinary recognition properties, demonstrates a new type of nanobio hybrid material. This, in turn, leads to a successful incorporation of the properties of the two different components in new hybrid materials that present important features for potential applications that range from advanced biomedical systems by means of very sensitive electrochemical sensors and biosensors to highly efficient electronics- and optics-based biochips. This article will focus on the recent advancement of the methods available for the chemical functionalization of graphene using DNA by different interactions (covalent or non-covalent and insertion of DNA through graphene nanopore or nanogap), various types of assemblies, and future prospects. Furthermore, the various potential applications of the resulting new nanobio hybrid materials are also highlighted.
机译:在诸如碳纳米管,富勒烯,石墨烯和纳米金刚石的碳基纳米材料中,石墨烯由于其优异的结构,电子和机械性能以及在各个领域的潜在应用而受到了广泛的关注。但是,所有当前已知形式的石墨烯材料都不能很好地分散或溶于大多数普通溶剂中。该限制决定在分子水平上探索石墨烯的化学及其纳米生物装置的应用。解决该问题的一种众所周知的解决方案是结合适当的实验条件使用分散剂,例如聚合物,生物聚合物或表面活性剂。在各种生物分子中,脱氧核糖核酸(DNA)由于其生物相容性和可更新性,以及非常令人感兴趣的双螺旋结构,已成为功能材料的吸引人的生物大分子,这保证了一系列难以检测到的独特性质。其他分子和聚合物。因此,具有卓越电子性能的石墨烯(一种碳基纳米材料)与具有卓越识别性能的DNA(一种纳米结构生物分子)的结合,证明了一种新型的纳米生物杂化材料。反过来,这又成功地将两种不同成分的特性整合到了新的混合材料中,这些材料为潜在应用提供了重要的功能,这些应用的范围从通过非常灵敏的电化学传感器和生物传感器的先进生物医学系统到高效的电子和基于光学的生物芯片。本文将重点介绍通过不同的相互作用(共价或非共价以及通过石墨烯纳米孔或纳米间隙插入DNA),各种类型的组件以及利用石墨进行化学功能化的方法的最新进展。此外,还强调了所得新型纳米生物杂化材料的各种潜在应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号