首页> 外文期刊>Proceedings of the Royal Society. Mathematical, physical and engineering sciences >Nanoscale mechanisms of surface stress and morphology evolution in FCC metals under noble-gas ion bombardments
【24h】

Nanoscale mechanisms of surface stress and morphology evolution in FCC metals under noble-gas ion bombardments

机译:稀有气体离子轰击下FCC金属的表面应力和形态演变的纳米尺度机理

获取原文
获取原文并翻译 | 示例
           

摘要

Here, we uncover three new nanoplasticity mechanisms, operating in highly stressed interstitial-rich regions in face-centred-cubic (FCC) metals, which are particularly important in understanding evolution of surface stress and morphology of a FCC metal under low-energy noble-gas ion bombardments. The first mechanism is the configurational motion of self-interstitials in subsonic scattering during ion bombardments. We have derived a stability criterion of self-interstitial scattering during ion embedding, which consistently predicts the possibility of vacancy- and interstitial-rich double-layer formation for various ion bombardments. The second mechanism is the growth by gliding of prismatic dislocation loops (PDLs) in a highly stressed interstitial-rich zone. This mechanism allows certain prismatic dislocations with their Burgers vectors parallel to the surface to grow in subway-glide mode (SGM) during ion bombardment. The SGM growth creates a large population of nanometre-sized prismatic dislocations beneath the surface. The third mechanism is the Burgers vector switching of a PDL that leads to unstable eruption of adatom islands during certain ion bombardments of FCC metals.We have also derived the driving force and kinetics for the growth by gliding of prismatic dislocations in an interstitial-rich environment as well as the criterion for Burgers vector switching, which consistently clarifies previously unexplainable experimental observations.
机译:在这里,我们发现了三种新的纳米塑性机制,这些机制在面心立方(FCC)金属的高应力间隙富集区域中起作用,这对于理解低能贵金属下FCC金属的表面应力和形态演变特别重要。气体离子轰击。第一种机制是在离子轰击过程中,自填隙子在亚音速散射中的结构运动。我们已经得出了离子嵌入过程中自我间隙散射的稳定性标准,该标准一致地预测了各种离子轰击形成空位和富含间隙的双层的可能性。第二种机制是通过在高应力的富间隙区域滑动棱柱形位错环(PDL)来生长。这种机制允许在离子轰击过程中,某些棱柱形位错的Burgers矢量与表面平行,以地铁滑行模式(SGM)生长。 SGM的生长在表面之下产生了大量的纳米级棱柱形位错。第三种机制是PDL的Burgers矢量切换,在FCC金属的某些离子轰击过程中会导致吸附原子岛的不稳定喷发。我们还通过在富含间隙的环境中滑动了棱柱状位错,得出了生长的驱动力和动力学。以及Burgers矢量切换的标准,这始终澄清了以前无法解释的实验观察结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号