...
首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers, Part H. Journal of Engineering in Medicine >Development and application of a one-dimensional blood flow model for microvascular networks
【24h】

Development and application of a one-dimensional blood flow model for microvascular networks

机译:微血管网络的一维血流模型的开发与应用

获取原文
获取原文并翻译 | 示例
           

摘要

Although there are many studies available in the literature on time domain modelling of one-dimensional network blood flow, the rheological properties of blood in this modelling framework have often been disregarded through the inviscid assumption. While such a simplification may be suitable for studying the larger vessels of the circulatory system, this approach cannot be taken when modelling flow in the vessels of microcirculation in which viscous effects are much more significant. In this study, a one-dimensional network blood flow model was extended to incorporate experimentally characterized properties of the non-Newtonian blood rheology, namely the reduction in the effective viscosity in thin vessels (the Fahraeus-Lindqvist effect) and the non-proportional splitting of red blood cells at junctions (phase separation). The numerical implementation was based on the high-order finite element technique with implicit time integration, necessitated by the decreasing length of vessels on this scale. Investigations in small networks indicated that the diameter dependence of viscosity has a major impact on the overall flow and should be included in small vessel networks. However, since phase separation effects are significant only in small arterioles of diameter less than 40 urn and require significant additional complexities in computation, they may be neglected for networks that do not contain these vessels without causing a large error. The proposed technique was applied to a coronary vascular subnetwork extracted from micro computed tomography scans of a rat heart consisting of approximately 2500 segments and proved to be computationally efficient, thus providing a potential foundation for applying this model to future physiological investigations.
机译:尽管在文献中有很多关于一维网络血流时域建模的研究,但是在这种建模框架中,血液的流变特性经常由于无形的假设而被忽略。尽管这种简化可能适合于研究循环系统的较大血管,但当对微循环血管中的流动建模(粘性影响更为显着)时,不能采用这种方法。在这项研究中,扩展了一个一维网络血流模型,以结合非牛顿血液流变学的实验特征,即降低细血管中的有效粘度(Fahraeuus-Lindqvist效应)和非比例分裂交界处的红细胞数量(相分离)。数值实现基于具有隐式时间积分的高阶有限元技术,这是由于在这种规模上减小容器长度所必需的。在小型网络中的研究表明,粘度的直径依赖性对整体流量有重大影响,因此应包括在小型容器网络中。但是,由于相分离效应仅在直径小于40微米的小小动脉中才显着,并且在计算中需要显着的额外复杂性,因此对于不包含这些血管的网络而不会引起大误差的情况,它们可能会被忽略。拟议的技术应用于从大约2500个段的大鼠心脏的微计算机断层扫描中提取的冠状动脉血管子网,并被证明具有计算效率,从而为将该模型应用于未来的生理学研究提供了潜在的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号