首页> 外文期刊>Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems >Numerical simulation of microparticles penetration and gas dynamics in an axi-symmetric supersonic nozzle for genetic vaccination
【24h】

Numerical simulation of microparticles penetration and gas dynamics in an axi-symmetric supersonic nozzle for genetic vaccination

机译:轴对称超音速喷嘴中微粒渗透和气体动力学的数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

This paper describes two phase (solid particles/gas) flow in a supersonic nozzle that is part of a device for micromolecular vaccine/drug delivery. It accelerates micro solid particles to high speeds sufficient to penetrate the viable epidermis layer to achieve the pharmaceutical effect. Helium is used as the driving gas for the solid particles because of its high compressibility factor. A numerical parametric study was performed for gas pressures ranging between 3 and 6 MPa and gold particles of diameters 1.8 μm and 5 μm. The computed results show that uniform particle velocity was achieved at standoff distance of 2 exit diameters (D_e) downstream of the device exit with particles concentrated on the supersonic core jet. Increasing the helium pressure from 3 to 6 MPa caused an increase in the particle velocity of 24% for particles with a diameter of 1.8 μm and 1% for particles of diameter 5 μm at the standoff distance. Furthermore increased gas pressure has adverse effect on particles concentration. As the inlet pressure increases, the particles are concentrated more at the core of the nozzle. Semi-empirical particle penetration calculation confirms the numerical results that the 5 μm particles penetration distance is 45-135 μm and the 1.8 μm diameter penetration is 35-95 μm beneath the skin. Comparison of different geometries has been done in order to understand each section function and to gain optimum performance.
机译:本文介绍了超声波喷嘴中的两相(固体颗粒/气体)流,该喷嘴是用于微分子疫苗/药物输送的设备的一部分。它可将微固体颗粒加速至足以穿透表皮层的高速度,从而达到药物作用。氦由于其高的压缩系数而被用作固体颗粒的驱动气体。对压力范围为3到6 MPa的气体以及直径为1.8μm和5μm的金颗粒进行了数值参数研究。计算结果表明,在装置出口下游的出口直径为2个出口直径(D_e)的隔离距离处实现了均匀的粒子速度,其中粒子集中在超音速核心射流上。将氦气压力从3 MPa增加到6 MPa会导致在间隔距离处,对于直径为1.8μm的粒子,粒子速度增加24%,对于直径为5μm的粒子,粒子速度增加1%。此外,气压升高对颗粒浓度有不利影响。随着入口压力的增加,颗粒会更多地集中在喷嘴的中心。半经验颗粒渗透计算证实了以下结果:5μm颗粒穿透距离为45-135μm,直径1.8μm皮肤穿透深度为35-95μm。为了了解每个截面的功能并获得最佳性能,已经进行了不同几何形状的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号