...
首页> 外文期刊>Chemical research in toxicology >Study of charge-dependent transport and toxicity of peptide-functionalized silver nanoparticles using zebrafish embryos and single nanoparticle plasmonic spectroscopy
【24h】

Study of charge-dependent transport and toxicity of peptide-functionalized silver nanoparticles using zebrafish embryos and single nanoparticle plasmonic spectroscopy

机译:使用斑马鱼胚胎和单纳米粒子等离子体光谱研究肽官能化银纳米粒子的电荷依赖性运输和毒性

获取原文
获取原文并翻译 | 示例
           

摘要

Nanomaterials possess unusually high surface area-to-volume ratios and surface-determined physicochemical properties. It is essential to understand their surface-dependent toxicity in order to rationally design biocompatible nanomaterials for a wide variety of applications. In this study, we have functionalized the surfaces of silver nanoparticles (Ag NPs, 11.7 ± 2.7 nm in diameter) with three biocompatible peptides (CALNNK, CALNNS, CALNNE) to prepare positively (Ag-CALNNK NPs+ζ), negatively (Ag-CALNNS NPs-2ζ), and more negatively charged NPs (Ag-CALNNE NPs -4ζ), respectively. Each peptide differs in a single amino acid at its C-terminus, which minimizes the effects of peptide sequences and serves as a model molecule to create positive, neutral, and negative charges on the surface of the NPs at pH 4-10. We have studied their charge-dependent transport into early developing (cleavage-stage) zebrafish embryos and their effects on embryonic development using dark-field optical microscopy and spectroscopy (DFOMS). We found that all three Ag-peptide NPs passively diffused into the embryos via their chorionic pore canals, and stayed inside the embryos throughout their entire development (120 h), showing charge-independent diffusion modes and charge-dependent diffusion coefficients. Notably, the NPs create charge-dependent toxic effects on embryonic development, showing that the Ag-CALNNK NPs+ζ (positively charged) are the most biocompatible while the Ag-CALNNE NPs-4ζ (more negatively charged) are the most toxic. By comparing with our previous studies of the same sized citrated Ag and Au NPs, the Ag-peptide NPs are much more biocompatible than the citrated Ag NPs, and nearly as biocompatible as the Au NPs, showing the dependence of nanotoxicity upon the surface charges, surface functional groups, and chemical compositions of the NPs. This study also demonstrates powerful applications of single NP plasmonic spectroscopy for quantitative analysis of single NPs in vivo and in tissues, and reveals the possibility of rational design of biocompatible NPs.
机译:纳米材料具有异常高的表面积体积比和表面确定的物理化学性质。为了合理设计适用于多种应用的生物相容性纳米材料,必须了解它们的表面依赖性毒性。在这项研究中,我们使用三种生物相容性肽(CALNNK,CALNNS,CALNNE)功能化了银纳米颗粒(Ag NP,直径为11.7±2.7 nm)的表面,以制备阳性(Ag-CALNNK NPs +ζ),制备阴性(Ag- CALNNSNPs-2ζ)和带更多负电荷的NPs(Ag-CALNNE NPs-4ζ)。每个肽在其C端都有一个氨基酸,这使肽序列的影响最小化,并充当模型分子在pH值为4-10的NP表面上产生正电荷,中性电荷和负电荷。我们已经研究了它们的电荷依赖运输到早期发育(卵裂期)斑马鱼胚胎和使用暗场光学显微镜和光谱法(DFOMS)对胚胎发育的影响。我们发现,所有三个Ag肽NPs都通过它们的绒毛膜孔道被动扩散到胚胎中,并在整个发育过程中(120小时)停留在胚胎内部,显示出电荷无关的扩散模式和电荷依赖性的扩散系数。值得注意的是,NPs对胚胎发育产生电荷依赖的毒性作用,表明Ag-CALNNK NPs +ζ(带正电)是最具生物相容性的,而Ag-CALNNENPs-4ζ(带负电的)最具毒性。与我们之前对相同大小的柠檬酸银和金纳米颗粒的研究相比,银肽纳米颗粒的生物相容性比柠檬酸银纳米颗粒高得多,并且与金纳米颗粒的生物相容性几乎相同,这表明纳米毒性对表面电荷的依赖性, NP的表面官能团和化学组成。这项研究还证明了单NP等离子体光谱技术在体内和组织中单NP定量分析的强大应用,并揭示了合理设计生物相容性NP的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号