...
首页> 外文期刊>Powder Metallurgy and Metal Ceramics >MICROSTRUCTURE, GROWTH KINETICS, AND ABRASIVE WEAR RESISTANCE OF BORIDE LAYERS ON Fe-30% Cr ALLOY
【24h】

MICROSTRUCTURE, GROWTH KINETICS, AND ABRASIVE WEAR RESISTANCE OF BORIDE LAYERS ON Fe-30% Cr ALLOY

机译:Fe-30%Cr合金上硼化物层的组织,生长动力学和磨蚀性

获取原文
获取原文并翻译 | 示例

摘要

Two boride layers are found to form at the interface between reacting phases in the course of boriding a Fe-30% Cr alloy in boron powder with KBF4 (activator) in the temperature range of 850-950 and reaction times 3600-43200 sec (1-12 h). Each of these layers is single-phase structurally (crystallographically) and two-phase compositionally (chemically). The outer boride layer bordering boron consists of the crystals of the (Fe, Cr)B and (Cr, Fe)B compounds, while the inner layer adjacent to the alloy base comprises the crystals of the (Fe, Cr)_2B and (Cr, Fe)_2B compounds. The characteristic feature of both layers is a profound texture. Diffusional layer-growth kinetics are close to parabolic and can alternatively be described by a system of two non-linear differential equations dx/dt = (kB/x) - (rgkFe/py), dy/dt = (kFe/y) - (qkB/sgx), where x is the outer FeB layer thickness (m), y is the inner Fe_2B layer thickness (m), kB is the FeB layer growth-rate constant (m~2 sec~(-1)), kFe is the Fe_2B layer growth-rate constant (m~2 sec~(-1)), g is the ratio of the FeB and Fe_2B molar volumes, p = q = r = 1, and s = 2 (factors from the chemical formulae of FeB and Fe_2B). The temperature dependence of the layer growth-rate constants obeys a relation of the Arrhenius type K = Aexp (-E/RT), where K stands for any constant, A is the frequency factor, E is the activation energy, R is the gas constant, and T is the absolute temperature. Application of the least-squares fit method yielded the following equations: kB = 3.42 10~(-8) exp(-175.4 kJ mol~(-1)/RT) m~2 sec~(-1), kFe = 7.45 10~(-9) exp(-144.6 kJ mol~(-1)/RT) m~2 sec~(-1). Microhardness values are 18.1 GPa for the outer boride layer, 15.2 GPa for the inner layer, and 1.75 GPa for the alloy base. The dry abrasive wear resistance of the outer boride layer, found from mass loss measurements, is more than 300 times greater than that of the Fe-30% Cr alloy base. Such a huge increase in wear resistance is due to the microstructure of boride layers having a peculiar regular arrangement of enhanced rigidity.
机译:发现在850-950的温度范围内,反应时间3600-43200 sec(1)的条件下,在硼粉中的Fe-30%Cr合金与KBF4(活化剂)硼化的过程中,在反应相之间的界面处形成了两个硼化物层。 -12小时)。这些层中的每一层在结构上(晶体学上)是单相的,在组成上(化学上)是两相的。与硼接壤的外硼化物层由(Fe,Cr)B和(Cr,Fe)B化合物的晶体组成,而与合金基体相邻的内层包括(Fe,Cr)_2B和(Cr ,Fe)_2B化合物。这两层的特征都是深厚的质地。扩散层生长动力学接近于抛物线动力学,并且可以用两个非线性微分方程dx / dt =(kB / x)-(rgkFe / py),dy / dt =(kFe / y)- (qkB / sgx),其中x是外FeB层厚度(m),y是内Fe_2B层厚度(m),kB是FeB层生长速率常数(m〜2 sec〜(-1)), kFe是Fe_2B层的生长速率常数(m〜2 sec〜(-1)),g是FeB和Fe_2B摩尔体积的比,p = q = r = 1,s = 2(化学因素FeB和Fe_2B的化学式)。层生长速率常数的温度依赖性服从Arrhenius类型K = Aexp(-E / RT)的关系,其中K代表任何常数,A是频率因子,E是活化能,R是气体常数,T是绝对温度。最小二乘拟合方法的应用得出以下方程式:kB = 3.42 10〜(-8)exp(-175.4 kJ mol〜(-1)/ RT)m〜2 sec〜(-1),kFe = 7.45 10 〜(-9)exp(-144.6 kJ mol〜(-1)/ RT)m〜2 sec〜(-1)。外部硼化物层的显微硬度值为18.1 GPa,内部层的显微硬度值为15.2 GPa,合金基底的显微硬度值为1.75 GPa。通过质量损失测量发现,外硼化物层的干磨耗耐磨性是Fe-30%Cr合金基体的干磨耗耐磨性的300倍以上。如此巨大的耐磨性提高归因于硼化物层的微观结构具有特殊的规则排列并具有增强的刚度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号