...
首页> 外文期刊>Precambrian Research >Multiple sulfur isotope signature of early Archean oceanic crust, Isua (SW-Greenland)
【24h】

Multiple sulfur isotope signature of early Archean oceanic crust, Isua (SW-Greenland)

机译:古代太古宙洋壳伊苏阿(SW-格陵兰)的多种硫同位素特征

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The Archean sulfur cycle was different from the present-day cycle, as the emission of volcanogenic sulfurous gases was the dominant process in the anoxic environment of the early Earth.This emitted sulfur exhibits mass-independently fractionated sulfur isotopes (MIF-S), resulting from photochemical reactions in the atmosphere, and it differs substantially from unfractionated sulfur in the mantle. So far, the main focus of multiple sulfur analyses (S-32, S-33, S-34 and S-36) was placed on the sedimentary part of the Archean sulfur cycle. In order to constrain the magmatic part of the sulfur cycle, we analyzed the sulfur isotopic composition of oceanic crustal rocks from the ca. 3.7-3.8 Ga Isua Supracrustal Belt (ISB). Differently altered samples were taken from two units:(1) the Undifferentiated Amphibolites (UA) and (2) the younger Amphibolites with Boninitic affinity (AB). The mean values are:delta S-34(CRS) = +0.01 +/- 0.65 parts per thousand (values range from -0.87 to 1.37%0; CRS = chromium-reducible sulfur), Delta S-33(CRS) = +0.02 +/- 0.12%0 (values range from -0.17 to 0.26 parts per thousand), Delta S-36(CRS) = -0.47 +/- 0.06 parts per thousand (values range from -0.56 to -0.38 parts per thousand). Thus, the mean isotope values support the assumption that the sulfur isotopic signature reflects the expected near-zero signature of their mantle origin. However, differences in Delta S-33(CRS) values are discernible and non-zero suggesting that different sources are contributing to the isotopic signature. An influence of alteration is excluded for all samples as different alteration-sensitive geochemical parameters do not show any correlation with the multiple sulfur isotope signatures. Further, it is unlikely that the small magnitudes in Delta S-33(CRS) are generated by microbial mass-dependent processes because of the narrow range of delta S-34(CRS) values. Possible sources contributing an atmospheric MIF-S signature include seawater sulfate (negative Delta S-33(CRS) values) through hydrothermal circulation, the assimilation of ocean floor sediments during the ascent of the melt and/or a mantle source contamination by subducted oceanic slab. (C) 2016 Elsevier B.V. All rights reserved.
机译:太古代的硫循环与当今的循环不同,因为火山产生的含硫气体的排放是地球早期缺氧环境中的主要过程,该排放的硫表现出质量独立的分馏硫同位素(MIF-S),从而与大气中的光化学反应有关,它与地幔中未分离的硫​​有很大不同。到目前为止,多种硫分析(S-32,S-33,S-34和S-36)的主要重点放在了太古代硫循环的沉积部分。为了约束硫循环的岩浆部分,我们分析了约旦的大洋地壳岩石的硫同位素组成。 3.7-3.8嘎伊苏阿超韧带(ISB)。从两个单元中获取了不同变化的样品:(1)未分化的两性生物(UA)和(2)具有Boninitic亲和力的年轻两性生物(AB)。平均值为:δS-34(CRS)= +0.01 +/- 0.65千分之一(值范围-0.87至1.37%0; CRS =铬可还原硫),δS-33(CRS)= + 0.02 +/- 0.12%0(值范围从-0.17到0.26千分之一),Delta S-36(CRS)= -0.47 +/- 0.06部分/千(值范围在-0.56到-0.38千分之一) 。因此,平均同位素值支持以下假设:硫同位素特征反映了其地幔起源的预期接近零的特征。然而,Delta S-33(CRS)值的差异是可辨别的,并且非零,这表明不同的来源正在促进同位素标记。由于所有对蚀变敏感的地球化学参数与多个硫同位素特征都没有任何相关性,因此对所有样品均不考虑蚀变的影响。此外,由于ΔS-34(CRS)值的范围较窄,因此不太可能通过微生物质量依赖性过程产生ΔS-33(CRS)中的小幅度。产生大气MIF-S信号的可能来源包括通过水热循环产生的海水硫酸盐(负Delta S-33(CRS)值),在熔体上升过程中海底沉积物的同化作用和/或俯冲的海洋平板对地幔源的污染。 。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号