首页> 外文期刊>Plasma Sources Science & Technology >Electric propulsion for satellites and spacecraft: established technologies and novel approaches
【24h】

Electric propulsion for satellites and spacecraft: established technologies and novel approaches

机译:卫星和航天器的电力推进:既有的技术和新颖的方法

获取原文
获取原文并翻译 | 示例
           

摘要

This contribution presents a short review of electric propulsion (EP) technologies for satellites and spacecraft. Electric thrusters, also termed ion or plasma thrusters, deliver a low thrust level compared to their chemical counterparts, but they offer significant advantages for in-space propulsion as energy is uncoupled to the propellant, therefore allowing for large energy densities. Although the development of EP goes back to the 1960s, the technology potential has just begun to be fully exploited because of the increase in the available power aboard spacecraft, as demonstrated by the very recent appearance of all-electric communication satellites. This article first describes the fundamentals of EP: momentum conservation and the ideal rocket equation, specific impulse and thrust, figures of merit and a comparison with chemical propulsion. Subsequently, the influence of the power source type and characteristics on the mission profile is discussed. Plasma thrusters are classically grouped into three categories according to the thrust generation process: electrothermal, electrostatic and electromagnetic devices. The three groups, along with the associated plasma discharge and energy transfer mechanisms, are presented via a discussion of long-standing technologies like arcjet thrusters, magnetoplasmadynamic thrusters, pulsed plasma thrusters and ion engines, as well as Hall thrusters and variants. More advanced concepts and new approaches for performance improvement are discussed afterwards: magnetic shielding and wall-less configurations, negative ion thrusters and plasma acceleration with a magnetic nozzle. Finally, various alternative propellant options are analyzed and possible research paths for the near future are examined.
机译:该文稿简要介绍了卫星和航天器的电力推进(EP)技术。电动推进器,也称为离子推进器或等离子推进器,与化学推进器相比,具有较低的推力水平,但是由于能量与推进剂分离,因此它们在空间推进方面具有显着优势,因此可实现较大的能量密度。尽管EP的发展可以追溯到1960年代,但是由于航天器上可用功率的增加,该技术的潜力才刚刚开始被充分利用,正如最近出现的全电通信卫星所证明的那样。本文首先介绍了EP的基本原理:动量守恒和理想的火箭方程,比冲和推力,品质因数以及与化学推进的比较。随后,讨论了电源类型和特性对任务配置文件的影响。根据推力产生过程,等离子推进器通常分为三类:电热,静电和电磁设备。通过讨论长期技术,例如电弧喷射推进器,磁等离子体动力推进器,脉冲等离子体推进器和离子引擎,以及霍尔推进器及其变型,介绍了这三类以及相关的等离子体放电和能量传输机制。随后将讨论更先进的概念和提高性能的新方法:磁屏蔽和无壁配置,负离子推进器以及带磁喷嘴的等离子体加速。最后,分析了各种替代性推进剂方案,并研究了不久的将来可能的研究路径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号