...
首页> 外文期刊>Plasma physics and controlled fusion >A 1D model for describing ion cyclotron resonance heating at arbitrary cyclotron harmonics in tokamak plasmas
【24h】

A 1D model for describing ion cyclotron resonance heating at arbitrary cyclotron harmonics in tokamak plasmas

机译:一维模型,用于描述托卡马克等离子体中任意回旋加速器的离子回旋共振加热

获取原文
获取原文并翻译 | 示例

摘要

Both at low and higher cyclotron harmonics, properly accounting for finite Larmor radius effects is crucial in many ion cyclotron resonance frequency heating scenario's creating high energy tails. This paper discusses an extension TOMCAT-U of the 1D TOMCAT tokamak plasma wave equation solver (Van Eester and Koch 1998 Plasma Phys. Control. Fusion 40 1949) to arbitrary harmonics and arbitrary wavelengths while only keeping leading order terms in equilibrium variation terms. Rather than adopting the particle position, the guiding center position is used as the independent variable when writing down an expression for the dielectric response that is suitable for numerical application. This choice of independent variable yields intuitive expressions involving the Kennel-Engelmann operator which can directly be linked to the corresponding expressions in the RF diffusion operator appearing in the Fokker-Planck equation. It also guarantees that a positive definite power transfer from waves to particles is ensured for any of the wave modes in a plasma in which all populations have a Maxwellian distribution, as is expected from first principles. Rather than relying on a truncated Taylor series expansion of the dielectric response, an integrodifferential approach that retains all finite Larmor radius effects is proposed. To keep the required computation time for this generalized description reasonable, tabulation of integrals is intensively used. Although the accent is on the presentation of the upgraded formalism as well as the adopted recursions and tabulations, a few examples are provided to illustrate the potential of the new wave code that relies on these tabulations.
机译:在低和高的回旋加速器谐波中,适当考虑有限的拉莫尔半径效应在许多离子回旋加速器共振频率加热方案中产生高能尾部的过程中都是至关重要的。本文讨论了将一维TOMCAT托卡马克等离子体波方程求解器(Van Eester和Koch 1998 Plasma Phys.Control。Fusion 40 1949)的TOMCAT-U扩展到任意谐波和任意波长,同时仅保持平衡变化项中的前导项。在写下适用于数值应用的介电响应表达式时,将引导中心位置用作自变量,而不是采用粒子位置。对自变量的这种选择会产生涉及Kennel-Engelmann运算符的直观表达式,该表达式可以直接链接到Fokker-Planck方程中出现的RF扩散运算符中的相应表达式。如第一原理所期望的那样,它还保证了对于等离子体中所有波具有麦克斯韦分布的等离子体中的任何波模式,都确保了从波到粒子的正确定功率传输。与其依靠介电响应的截断泰勒级数展开,不如提出一种保留所有有限拉莫尔半径效应的积分微分方法。为了使该概括描述所需的计算时间保持合理,大量使用了积分表。尽管重点是介绍升级的形式主义以及采用的递归和列表,但还是提供了一些示例来说明依赖于这些列表的新潮代码的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号