...
首页> 外文期刊>Chemical science >A theoretical analysis of chemical bonding, vibronic coupling, and magnetic anisotropy in linear iron(II) complexes with single-molecule magnet behavior
【24h】

A theoretical analysis of chemical bonding, vibronic coupling, and magnetic anisotropy in linear iron(II) complexes with single-molecule magnet behavior

机译:具有单分子磁体行为的线性铁(II)配合物的化学键,振动耦合和磁各向异性的理论分析

获取原文
获取原文并翻译 | 示例
           

摘要

The electronic structure and magnetic anisotropy of six complexes of high-spin Fe" with linear FeX2 (X = C, N, O) cores, Fe[N(SiMe3)(Dipp)]2 (1), Fe[C(SiMe3)3]2 (2), Fe[N(H)Ar']2 (3), Fe[N(H)Ar~*]2 (4), Fe[O(Ar')]2 (5), and Fe[N(f-Bu)2]2 (7) [Dipp = C6H3-2,6-Pr2~i; Ar' = C5H3-2,6-(C6H3-2,6-P2~i)2; Ar~* = C6H3-2,6-(C5H2-2,4,6-Pr2~i)2; Ar~* = QH3-2,6-(C6H2-2,4,6-Me3)2], and one bent (FeN2) complex, Fe[N(H)Ar~#]2 (6), have been studied theoretically using complete active space self-consistent field (CASSCF) wavefunctions in conjunction with N-Electron Valence Perturbation Theory (NEVPT2) and quasidegenerate perturbation theory (QDPT) for the treatment of magnetic field and spin-dependent relativistic effects. Mossbauer studies on compound 2 indicate an internal magnetic field of unprecedented magnitude (151.7 T) at the Fe" nucleus. This has been interpreted as arising from first order angular momentum of the 5A ground state of Fe" center {J. Am. Chem. Soc. 2004, 126, 10206). Using geometries from X-ray structural data, ligand field parameters for the Fe-ligand bonds were extracted using a 1 : 1 mapping of the angular overlap model onto multireference wavefunctions. The results demonstrate that the metal-ligand bonding in these complexes is characterized by: (i) strong 3dZ2-4s mixing (in all complexes), (ii) tc-bonding anisotropy involving the strong 7t-donor amide ligands (in 1, 3-4, 6, and 7) and (iii) orbital mixings of the σ-π type for Fe-O bonds (misdirected valence in 5). The interplay of all three effects leads to an appreciable symmetry lowering and splitting of the ~5Δ (3d_(xy), 3d_(x~2-y~) ground state. The strengths of the effects increase in the order 1 < 5 < 7 ~ 6. However, the differential bo)nding effects are largely overruled by first-order spin-orbit coupling, which leads to a nearly non-reduced orbital contribution of L = 1 to yield a net magnetic moment of about 6 μ_B. This unique spin-orbital driven magnetism is significantly modulated by geometric distortion effects: static distortions for the bent complex 6 and dynamic vibronic coupling effects of the Renner-Teller type of increasing strength for the series 1-5. Ab initio calculations based on geometries from X-ray data for 1 and 2 reproduce the magnetic data exceptionally well. Magnetic sublevels and wavefunctions were calculated employing a dynamic Renner-Teller vibronic coupling model with vibronic coupling parameters adjusted from the ab initio results on a small Fe(CH3)2 truncated model complex. The model reproduces the observed reduction of the orbital moments and quantitatively reproduces the magnetic susceptibility data of 3-5 after introduction of the vibronic coupling strength (f) as a single adjustable parameter. Its value varies in a narrow range (f = 0.142 ± 0.015) across the series. The results indicate that the systems are near the borderline of the transition from a static to a dynamic Renner-Teller effect. Renner-Teller vibronic activity is used to explain the large reduction of the spin-reversal barrier U_(eff) along the series from 1 to 5. Based upon the theoretical analysis, guidelines for generating new single-molecule magnets with enhanced magnetic anisotropies and longer relaxation times are formulated.
机译:具有线性FeX2(X = C,N,O)核,Fe [N(SiMe3)(Dipp)] 2(1),Fe [C(SiMe3)的高自旋Fe“六种配合物的电子结构和磁各向异性3] 2(2),Fe [N(H)Ar'] 2(3),Fe [N(H)Ar〜*] 2(4),Fe [O(Ar')] 2(5)和Fe [N(f-Bu)2] 2(7)[Dipp = C6H3-2,6-Pr2〜i; Ar'= C5H3-2,6-(C6H3-2,6-P2〜i)2; Ar 〜* = C6H3-2,6-(C5H2-2,4,6-Pr2〜i)2; Ar〜* = QH3-2,6-(C6H2-2,4,6-Me3)2]和一个利用完整的有源空间自洽场(CASSCF)波函数,结合N电子价态扰动理论(NEVPT2),对弯曲的(FeN2)配合物Fe [N(H)Ar〜#] 2(6)进行了理论研究。准生成微扰理论(QDPT)用于处理磁场和自旋相关的效应Mossbauer对化合物2的研究表明,Fe“核处的内部磁场具有前所未有的强度(151.7 T)。这被解释为是由Fe“中心的5A基态的一阶角动量引起的(J. Am。Chem。Soc。2004,126,10206)。使用来自X射线结构数据的几何形状,用于使用角重叠模型与多参考波函数的1:1映射提取铁-配体键,结果表明这些配合物中的金属-配体键具有以下特征:(i)3dZ2-4s强烈混合(在所有配合物中) ,(ii)涉及强7t-给体酰胺配体(在1、3-4、6和7中)的tc键各向异性,以及(iii)Fe-O键的σ-π型轨道混合(取向方向错误) 5)。这三种效应的相互作用导致〜5Δ(3d_(xy),3d_(x〜2-y〜)基态的对称性降低和分裂,效应的强度按1 < 5 <7〜6。但是,一阶自旋-轨道耦合大大抵消了微弱的束缚效应,这导致了几乎没有减小的L = 1的磁场贡献产生约6μB的净磁矩。这种独特的自旋轨道驱动的磁场受到几何畸变效应的显着调制:弯曲复合体6的静态畸变和Renner-Teller型增加强度的1-5系列的动态电声耦合效应。从针对1和2的X射线数据的几何形状进行的从头算计算可以很好地重现磁数据。使用动态Renner-Teller振动耦合模型,通过从小的Fe(CH3)2截短模型复合物的从头算结果调整的振动耦合参数,计算了磁性子级和波函数。该模型再现了观察到的轨道矩的减小,并在引入了振动耦合强度(f)作为单个可调参数之后,定量再现了3-5的磁化率数据。在整个系列中,其值都在狭窄范围内变化(f = 0.142±0.015)。结果表明,该系统接近从静态Renner-Teller效应过渡的边界。 Renner-Teller的振动活动被用来解释自1至5期间自旋逆向势垒U_(eff)的大幅减少。基于理论分析,指导原则是生成具有增强的磁各向异性和更长的时间的新的单分子磁体制定了松弛时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号