...
首页> 外文期刊>Chemical Engineering Science >Bacterial aerosol neutralization by aerodynamic shocks using a novel impactor system: Design and computation
【24h】

Bacterial aerosol neutralization by aerodynamic shocks using a novel impactor system: Design and computation

机译:使用新型冲击器系统通过气动冲击中和细菌气溶胶:设计和计算

获取原文
获取原文并翻译 | 示例
           

摘要

Neutralization of bacterial aerosol releases is critical in countering bioterrorism. As a possible bacterial aerosol neutralization method that avoids the use of chemicals, we investigate the mechanical instabilities of the bacterial cell envelope in air as the bacteria pass through aerodynamic shocks. To carry out this fundamental investigation, a novel experimental impactor system is designed and built to simultaneously create a controlled and measured shock and to collect the bacteria after they pass through the shock. In the impactor system the aerosol flows through a converging nozzle, perpendicular to a collection surface that has an orifice through which the shocked bacteria enter the deceleration tube. Both experimental measurements of the pressure in the impactor system at multiple points and computational fluid dynamics simulations are used to quantitatively characterize the shocks created in the impactor. Specifically, the developed computational model describes the evolution of both the gas and the particle velocity and temperature in the impactor system to determine the forces exerted on the bacterial aerosol as they pass through the shock. The results indicate that the developed computational model predictions compare well with the experimental pressure measurements. The computational model is also used to predict the magnitude of the acceleration needed to neutralize various bacterial aerosols and guide on-going experimental work.
机译:细菌气溶胶释放的中和对于抵抗生物恐怖主义至关重要。作为一种避免使用化学药品的细菌气溶胶中和方法,我们研究了细菌通过空气动力学冲击后,空气中细菌细胞包膜的机械不稳定性。为了进行这项基础研究,设计并构建了一种新颖的实验撞击器系统,可同时产生可控和可测量的冲击,并在细菌通过冲击后收集细菌。在撞击器系统中,气雾剂流过一个会聚喷嘴,该喷嘴垂直于收集表面,该收集表面具有一个孔,受冲击的细菌可通过该孔进入减速管。冲击器系统中多点压力的实验测量和计算流体动力学模拟都用于定量表征冲击器中产生的冲击。具体来说,开发的计算模型描述了气体以及撞击器系统中粒子速度和温度的演变,以确定当细菌气雾通过冲击时施加在细菌气雾上的力。结果表明,所开发的计算模型预测与实验压力测量结果具有良好的对比。该计算模型还用于预测中和各种细菌气溶胶所需的加速度大小,并指导正在进行的实验工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号