...
首页> 外文期刊>Chemical Engineering Science >Analysis of reactivity and energy efficiency of methane conversion through non thermal plasmas
【24h】

Analysis of reactivity and energy efficiency of methane conversion through non thermal plasmas

机译:非热等离子体转化甲烷的反应性和能效分析

获取原文
获取原文并翻译 | 示例

摘要

The non oxidative conversion of natural gas by non thermal plasmas offers a promising route to produce higher value products, such as hydrogen and C_2 hydrocarbons, at a low energetic cost. In this work we present the results of a theoretical research aimed to study the reactivity of methane treated with atmospheric plasmas. The effects of various process parameters on energy efficiency, conversion, and selectivity to acetylene, ethylene, and ethane have been investigated for different reactor configurations. For this purpose two different models were used. The first consists of a detailed kinetic model and a simplified reactor description, based on the assumption that the plasma volume is homogeneous and adiabatic. It is apt to describe stationary discharges such as microwave and radio frequency plasmas. The second is a time dependent micro-discharge model based on similar assumptions that is suitable to study pulsed discharges. The results evidence a strong dependence between the energy efficiency of the discharge and the specific energy supplied. A kinetic analysis was performed in order to understand the main reaction paths activated by the plasma discharge. One of the main findings of this study is that the temperature evolution in the plasma volume plays a key role in determining the system reactivity, in particular in the case of atmospheric pulsed discharges. In fact, though such plasmas are often considered non-thermal, our calculations show that in the few milliseconds that follow a pulsed discharge the local temperature rapidly rises up to the point where endothermic reactions, such as homolytic scissions, get activated. Our simulations show that the inception of these reactions is accompanied by an increase of the process energy efficiency. Furthermore, since in micro-discharges transport phenomena can be important, fluid dynamic simulations of pulsed corona plasmas have been performed using a simplified kinetic scheme. Such computations have been useful to understand the main physical features of micro-discharges. Among the conclusions of this study are reported a set of guidelines that may be useful to improve the energy efficiency of plasma methane conversion processes.
机译:非热等离子体对天然气的非氧化转化为以较低的能源成本生产更高价值的产品(如氢气和C_2碳氢化合物)提供了一种有希望的途径。在这项工作中,我们提出了旨在研究用大气等离子体处理的甲烷的反应性的理论研究的结果。对于不同的反应器配置,已经研究了各种工艺参数对能量效率,转化率以及对乙炔,乙烯和乙烷的选择性的影响。为此,使用了两种不同的模型。第一个由详细的动力学模型和简化的反应器描述组成,基于等离子体体积均匀且绝热的假设。易于描述固定放电,例如微波和射频等离子体。第二个是基于时间的微放电模型,该模型基于类似的假设,适用于研究脉冲放电。结果证明了放电的能量效率与所提供的比能之间的强烈依赖性。进行了动力学分析,以了解由等离子体放电激活的主要反应路径。这项研究的主要发现之一是,血浆体积中的温度变化在确定系统反应性方面起着关键作用,特别是在大气脉冲放电的情况下。实际上,尽管这类等离子体通常被认为是非热等离子体,但我们的计算表明,在脉冲放电后的几毫秒内,局部温度会迅速升高,直至吸热反应(例如均质切开)被激活。我们的模拟表明,这些反应的开始伴随着过程能量效率的提高。此外,由于在微放电中传输现象可能很重要,因此已使用简化的动力学方案进行了脉冲电晕等离子体的流体动力学模拟。这样的计算对于理解微放电的主要物理特征很有用。在这项研究的结论中,据报道有一套指南可能对提高等离子体甲烷转化过程的能效有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号