首页> 外文期刊>Palaeogeography, Palaeoclimatology, Palaeoecology: An International Journal for the Geo-Sciences >The effect of abrupt climatic warming on biogeochemical cycling and N_2O emissions in a terrestrial ecosystem
【24h】

The effect of abrupt climatic warming on biogeochemical cycling and N_2O emissions in a terrestrial ecosystem

机译:突然的气候变暖对陆地生态系统生物地球化学循环和N_2O排放的影响

获取原文
获取原文并翻译 | 示例
       

摘要

The large, rapid increase in atmospheric N_2O concentrations that occurred concurrent with the abrupt warming at the end of the Last Glacial period might have been the result of a reorganization in global biogeochemical cycles. To explore the sensitivity of nitrogen cycling in terrestrial ecosystems to abrupt warming, we combined a scenario of climate and vegetation composition change based on multiproxy data for the Oldest Dryas-B?lling abrupt warming event at Gerzensee, Switzerland, with a biogeochemical model that simulates terrestrial N uptake and release, including N_2O emissions. As for many central European sites, the pollen record at the Gerzensee is remarkable for the abundant presence of the symbiotic nitrogen fixer Hippopha? rhamnoides (L.) during the abrupt warming that also marks the beginning of primary succession on immature glacial soils. Here we show that without additional nitrogen fixation, climate change results in a significant increase of N_2O emissions of approximately factor 3.4 (from 6.4±1.9 to 21.6±5.9 mg N_2O-N m~(-2) yr~(-1)). Each additional 1000 mg m~(-2) yr~(-1) of nitrogen added to the ecosystem through N-fixation results in additional N_2O emissions of 1.6 mg N_2O-N m~(-2) yr~(-1) for the time with maximum H. rhamnoides coverage. Our results suggest that local reactions of emissions to abrupt climate change could have been considerably faster than the overall atmospheric concentration changes observed in polar ice. Nitrogen enrichment of soils due to the presence of symbiotic N-fixers during early primary succession not only facilitates the establishment of vegetation on soils in their initial stage of development, but can also have considerable influence on biogeochemical cycles and the release of reactive nitrogen trace gases to the atmosphere.
机译:在最后一次冰川期结束时突然变暖的同时,大气中N_2O浓度的大量快速增加可能是全球生物地球化学循环重组的结果。为了探索陆地生态系统中氮循环对突然变暖的敏感性,我们基于瑞士Gerzensee最古老的Dryas-Billing突然变暖事件的多代理数据,结合了气候和植被组成变化的情景,并模拟了生物地球化学模型陆地氮的吸收和释放,包括N_2O排放。至于许多中欧站点,由于共生固氮剂沙棘的大量存在,Gerzensee的花粉记录是非凡的。突然变暖期间的鼠李糖(L.)也标志着未成熟冰土开始主要演替的开始。在这里,我们表明,在没有额外固氮的情况下,气候变化导致N_2O排放显着增加,约为3.4倍(从6.4±1.9到21.6±5.9 mg N_2O-N m〜(-2)yr〜(-1))。通过固氮作用向生态系统中每增加1000 mg m〜(-2)yr〜(-1),氮素的排放量就会增加1.6 mg N_2O-N m〜(-2)yr〜(-1)。鼠李糖杆菌最大覆盖时间。我们的结果表明,局部排放对突变的气候变化的反应可能比极地冰中观测到的总体大气浓度变化要快得多。在初期一次演替过程中,由于共生N固定剂的存在,土壤中的氮富集不仅促进了植物在发育初期的植被建立,而且还对生物地球化学循环和活性氮微量气体的释放产生了重大影响。大气。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号