...
首页> 外文期刊>Planta: An International Journal of Plant Biology >Cadmium inhibits the induction of high-affinity nitrate uptake in maize (Zea mays L.) roots
【24h】

Cadmium inhibits the induction of high-affinity nitrate uptake in maize (Zea mays L.) roots

机译:镉抑制玉米(Zea mays L.)根系中高亲和力硝酸盐吸收的诱导

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Cadmium (Cd) detoxification involves glutathione and phytochelatins biosynthesis: the higher need of nitrogen should require increased nitrate (NO3 -) uptake and metabolism. We investigated inducible high-affinity NO3 - uptake across the plasma membrane (PM) in maize seedlings roots upon short exposure (10 min to 24 h) to low Cd concentrations (0, 1 or 10 μM): the activity and gene transcript abundance of high-affinity NO3 - transporters, NO3 - reductases and PM H+-ATPases were analyzed. Exposure to 1 mM NO3 - led to a peak in high-affinity (0. 2 mM) NO3 - uptake rate (induction), which was markedly lowered in Cd-treated roots. Plasma membrane H+-ATPase activity was also strongly limited, while internal NO3 - accumulation and NO3 - reductase activity in extracts of Cd treated roots were only slightly lowered. Kinetics of high- and low-affinity NO3 - uptake showed that Cd rapidly (10 min) blocked the inducible high-affinity transport system; the constitutive high-affinity transport system appeared not vulnerable to Cd and the low-affinity transport system appeared to be less affected and only after a prolonged exposure (12 h). Cd-treatment also modified transcript levels of genes encoding high-affinity NO3 - transporters (ZmNTR2. 1, ZmNRT2. 2), PM H+-ATPases (ZmMHA3, ZmMHA4) and NO3 - reductases (ZmNR1, ZmNADH:NR). Despite an expectable increase in NO3 - demand, a negative effect of Cd on NO3 - nutrition is reported. Cd effect results in alterations at the physiological and transcriptional levels of NO3 - uptake from the external solution and it is particularly severe on the inducible high-affinity anion transport system. Furthermore, Cd would limit the capacity of the plant to respond to changes in NO3 - availability.
机译:镉(Cd)的解毒涉及谷胱甘肽和植物螯合素的生物合成:对氮的更高需求应要求增加硝酸盐(NO3--)的吸收和代谢。我们研究了短时间(10分钟至24小时)低Cd浓度(0、1或10μM)下玉米幼苗根部质膜(PM)的诱导型高亲和性NO3吸收:其活性和基因转录丰度分析了高亲和力的NO3-转运蛋白,NO3-还原酶和PM H + -ATPase。暴露于1 mM NO3-导致高亲和力(0. 2 mM)NO3-吸收速率(诱导)达到峰值,这在Cd处理的根中显着降低。 Cd处理过的根的提取物中的质膜H + -ATPase活性也受到极大限制,而内部NO3-积累和NO3-还原酶活性仅略微降低。高亲和力和低亲和力NO3吸收的动力学表明,镉快速(10分钟)阻断了诱导型高亲和力转运系统。本构型高亲和力运输系统似乎不易受Cd污染,而低亲和力运输系统似乎受到的影响较小,且仅在长时间暴露后(12 h)。镉处理还修饰了编码高亲和力NO3-转运蛋白(ZmNTR2.1,ZmNRT2.2),PM H + -ATPases(ZmMHA3,ZmMHA4)和NO3​​-还原酶(ZmNR1,ZmNADH:NR)的基因的转录水平。尽管NO 3-需求量有望增加,但据报道镉对NO 3-营养的负面影响。 Cd效应导致NO3的生理和转录水平发生改变-从外部溶液中吸收,并且在可诱导的高亲和力阴离子转运系统上尤为严重。此外,镉将限制工厂应对NO3变化的能力-可用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号