...
首页> 外文期刊>Plant Physiology and Biochemistry >MOLECULAR-GENETIC DISSECTION OF AMMONIUM ASSIMILATION IN ARABIDOPSIS THALIANA
【24h】

MOLECULAR-GENETIC DISSECTION OF AMMONIUM ASSIMILATION IN ARABIDOPSIS THALIANA

机译:拟南芥氨同化的分子遗传解剖。

获取原文
获取原文并翻译 | 示例

摘要

The process of assimilation of inorganic nitrogen into organic form is essential both for plant growth and development as nitrogen deprivation in plants can cause a number of metabolic deficiencies in plants. Thus, the study of the enzymes involved in ammonium assimilation have an impact on both basic and applied plant research. Ammonium is first assimilated into the amino acids glutamine and glutamate by the concerted actions of glutamine synthetase (GS), glutamine-oxoglutarate aminotransferase (GOGAT), and glutamate dehydrogenase (GDH). The glutamate and glutamine are then channeled into aspartate and asparagine by aspartate amino transferase (AspAT) and asparagine synthetase (AS). However, the actual biology of the ammonium assimilation pathway has been obscured by the fact that most reactions are catalyzed by multiple isoenzymes, located in distinct tissues and/or subcellular compartments. Therefore, standard biochemical methods used to define rate-limiting enzymes in a given pathway may lead to misleading interpretations when employed to study metabolic pathways in plants. Here we discuss how the availability of genetic and molecular tools, especially in the model plant Arabidopsis thaliana, have made it possible to start delineating the mechanisms of genetic regulation of the ammonium assimilatory pathway, and to destine the in vivo role of each isoenzyme. The basic knowledge obtained on the genes involved in the process of ammonium assimilation may be applied in attempts to increase the efficiency with which nitrogen is incorporated into organic form which may have marked effects on plant productivity, biomass, and crop yield. [References: 78]
机译:无机氮同化为有机形式的过程对于植物的生长和发育都是必不可少的,因为植物中氮的缺乏会导致植物体内许多代谢缺陷。因此,氨同化酶的研究对基础和应用植物研究都有影响。铵首先通过谷氨酰胺合成酶(GS),谷氨酰胺-氧代谷氨酸氨基转移酶(GOGAT)和谷氨酸脱氢酶(GDH)的协同作用被同化为氨基酸谷氨酰胺和谷氨酸。然后通过天冬氨酸氨基转移酶(AspAT)和天冬酰胺合成酶(AS)将谷氨酸和谷氨酰胺导入天冬氨酸和天冬酰胺。然而,由于大多数反应是由位于不同组织和/或亚细胞区室中的多种同工酶催化的,这一事实掩盖了氨同化途径的实际生物学特性。因此,用于研究给定途径中的限速酶的标准生化方法在研究植物中的代谢途径时可能导致误解。在这里,我们讨论了遗传和分子工具的可用性,尤其是在模型植物拟南芥中的可用性,如何使人们有可能开始描绘铵同化途径的遗传调控机制,并阐明每种同工酶的体内作用。氨同化过程中涉及的基因所获得的基础知识可用于尝试提高将氮掺入有机形式的效率,这可能会对植物的生产力,生物量和农作物产量产生显着影响。 [参考:78]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号