首页> 外文期刊>Chemical Engineering Science >CFD simulations of gas-liquid-solid stirred reactor: Prediction of critical impeller speed for solid suspension
【24h】

CFD simulations of gas-liquid-solid stirred reactor: Prediction of critical impeller speed for solid suspension

机译:气液固搅拌反应器的CFD模拟:固体悬浮液临界叶轮速度的预测

获取原文
获取原文并翻译 | 示例
       

摘要

In this work, simulations have been performed for three phase stirred dispersions using computational fluid dynamics model (CFD). The effects of tank diameter, impeller diameter, impeller design, impeller location, impeller speed, particle size, solid loading and superficial gas velocity have been investigated over a wide range. The Eulerian multi-fluid model has been employed along with the standard k-epsilon turbulence model to simulate the gas-liquid, solid-liquid and gas-liquid-solid flows in a stirred tank. A multiple reference frame (MRF) approach was used to model the impeller rotation and for this purpose a commercial CFD code, FLUENT 6.2. Prior to the simulation of three phase dispersions, simulations were performed for the two extreme cases of gas-liquid and solid-liquid dispersions and the predictions have been compared with the experimental velocity and hold-up profiles. The three phase CFD predictions have been compared with the experimental data of Chapman et al. [1983. Particle-gas-liquid mixing in stirred vessels, part III: three phase mixing. Chemical Engineering Research and Design 60, 167-181], Rewatkar et al. [1991. Critical impeller speed for solid suspension in mechanical agitated three-phase reactors. 1. Experimental part. Industrial and Engineering Chemistry Research 30, 1770-1784] and Zhu and Wu [2002. Critical impeller speed for suspending solids in aerated agitation tanks. The Canadian Journal of Chemical Engineering 80, 1-6] to understand the distribution of solids over a wide range of solid loading (0.34-15 wt%), for different impeller designs (Rushton turbine (RT), pitched blade down and upflow turbines (PBT45)), solid particle sizes (120-1000 mu m) and for various superficial gas velocities (0-10 mm/s). It has been observed that the CFD model could well predict the critical impeller speed over these design and operating conditions. (C) 2007 Elsevier Ltd. All rights reserved.
机译:在这项工作中,已经使用计算流体动力学模型(CFD)对三相搅拌的分散体进行了模拟。广泛研究了罐直径,叶轮直径,叶轮设计,叶轮位置,叶轮速度,粒度,固体负载和表观气体速度的影响。已使用欧拉多流体模型以及标准的k-ε湍流模型来模拟搅拌釜中的气液,固液和气液固流。多参考框架(MRF)方法用于模拟叶轮旋转,并为此目的使用商业CFD代码FLUENT 6.2。在对三相分散体进行模拟之前,先对气-液和固-液分散体这两种极端情况进行了模拟,并将预测值与实验速度和滞留曲线进行了比较。三相CFD预测已与Chapman等人的实验数据进行了比较。 [1983。在搅拌容器中进行颗粒气液混合,第三部分:三相混合。化学工程研究与设计60,167-181],Rewatkar等。 [1991。机械搅拌三相反应器中固体悬浮物的临界叶轮速度。 1.实验部分。工业和工程化学研究30,1770-1784]和Zhu and Wu [2002。临界叶轮速度,用于在充气搅拌罐中悬浮固体。加拿大化学工程杂志80,1-6]了解不同叶轮设计(Rushton涡轮(RT),变桨叶片向下和向上流动涡轮)在宽范围固体载荷(0.34-15 wt%)中的固体分布(PBT45)),固体颗粒尺寸(120-1000μm)和各种表观气体速度(0-10 mm / s)。已经观察到,CFD模型可以很好地预测在这些设计和操作条件下的临界叶轮速度。 (C)2007 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号