首页> 外文期刊>Plant physiology >Metabolome Phenotyping of Inorganic Carbon Limitation in Cells of the Wild Type and Photorespiratory Mutants of the Cyanobacterium Synechocystis sp Strain PCC 6803
【24h】

Metabolome Phenotyping of Inorganic Carbon Limitation in Cells of the Wild Type and Photorespiratory Mutants of the Cyanobacterium Synechocystis sp Strain PCC 6803

机译:野生型细胞和蓝藻蓝藻sp株PCC 6803光呼吸突变体中的无机碳限制代谢组表型。

获取原文
获取原文并翻译 | 示例
           

摘要

The amount of inorganic carbon represents one of the main environmental factors determining productivity of photoautotrophic organisms. Using the model cyanobacterium Synechocystis sp. PCC 6803, we performed a first metabolome study with cyanobacterial cells shifted from high CO2 (5% in air) into conditions of low CO2 (LC; ambient air with 0.035% CO2). Using gas chromatography-mass spectrometry, 74 metabolites were reproducibly identified under different growth conditions. Shifting wild-type cells into LC conditions resulted in a global metabolic reprogramming and involved increases of, for example, 2-oxoglutarate (2OG) and phosphoenolpyruvate, and reductions of, for example, sucrose and fructose-1,6-bisphosphate. A decrease in Calvin-Benson cycle activity and increased usage of associated carbon cycling routes, including photorespiratory metabolism, was indicated by synergistic accumulation of the fumarate, malate, and 2- phosphoglycolate pools and a transient increase of 3-phosphoglycerate. The unexpected accumulation of 2OG with a concomitant decrease of glutamine pointed toward reduced nitrogen availability when cells are confronted with LC. Despite the increase in 2OG and low amino acid pools, we found a complete dephosphorylation of the PII regulatory protein at LC characteristic for nitrogen-replete conditions. Moreover, mutants with defined blocks in the photorespiratory metabolism leading to the accumulation of glycolate and glycine, respectively, exhibited features of LC-treated wild-type cells such as the changed 2OG to glutamine ratio and PII phosphorylation state already under high CO2 conditions. Thus, metabolome profiling demonstrated that acclimation to LC involves coordinated changes of carbon and interacting nitrogen metabolism. We hypothesize that Synechocystis has a temporal lag of acclimating carbon versus nitrogen metabolism with carbon leading.
机译:无机碳的量代表决定光合自养生物生产力的主要环境因素之一。使用模型蓝藻Synechocystis sp。 PCC 6803,我们进行了首次代谢组研究,研究了从高CO2(空气中5%)到低CO2(LC;环境空气中0.035%CO2)的蓝细菌细胞。使用气相色谱-质谱法,可在不同的生长条件下重现74种代谢物。将野生型细胞转变为LC条件导致整体代谢重新编程,并涉及增加例如2-氧戊二酸酯(2OG)和磷酸烯醇丙酮酸,以及减少例如蔗糖和1,6-双磷酸果糖。富马酸酯,苹果酸和2-磷酸甘油酸酯池的协同积累和3-磷酸甘油酸酯的瞬时增加表明,Calvin-Benson循环活性降低,相关碳循环路线(包括光呼吸代谢)的使用增加。当细胞面临LC时,2OG的意外积累和谷氨酰胺的同时减少表明氮的利用率降低。尽管增加了2OG和低氨基酸池,我们发现LC的PII调节蛋白在富氮条件下具有完全的去磷酸化作用。此外,在光呼吸代谢中具有确定的阻断的突变体分别导致乙醇酸和甘氨酸的积累,表现出经LC处理的野生型细胞的特征,例如在高CO 2条件下已经改变了2OG与谷氨酰胺的比率以及PII的磷酸化状态。因此,代谢组谱分析表明,对LC的适应涉及碳的协调变化和相互作用的氮代谢。我们假设集胞藻具有暂时滞后的时间,在碳引导下碳与氮代谢的适应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号