首页> 外文期刊>Plant physiology >Determination of catalytic key amino acids and UDP sugar donor specificity of the cyanohydrin glycosyltransferase UGT85B1 from Sorghum bicolor. Molecular modeling substantiated by site-specific mutagenesis and biochemical analyses
【24h】

Determination of catalytic key amino acids and UDP sugar donor specificity of the cyanohydrin glycosyltransferase UGT85B1 from Sorghum bicolor. Molecular modeling substantiated by site-specific mutagenesis and biochemical analyses

机译:高粱双色氰醇的糖基转移酶UGT85B1的催化关键氨基酸和UDP糖供体特异性的测定。通过定点诱变和生化分析证实了分子模型

获取原文
获取原文并翻译 | 示例
           

摘要

Plants produce a plethora of structurally diverse natural products. The final step in their biosynthesis is often a glycosylation step catalyzed by a family 1 glycosyltransferase (GT). In biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor, the UDP-glucosyltransferase UGT85B1 catalyzes the conversion of p-hydroxymandelonitrile into dhurrin. Astructural model of UGT85B1 was built based on hydrophobic cluster analysis and the crystal structures of two bacterial GTs, GtfA and GtfB, which each showed approximately 15% overall amino acid sequence identity to UGT85B1. The model enabled predictions about amino acid residues important for catalysis and sugar donor specificity. p-Hydroxymandelonitrile and UDP-glucose (Glc) were predicted to be positioned within hydrogen-bonding distance to a glutamic acid residue in position 410 facilitating sugar transfer. The acceptor was packed within van der Waals distance to histidine H23. Serine S391 and arginine R201 form hydrogen bonds to the pyrophosphate part of UDP-Glc and hence stabilize binding of the sugar donor. Docking of UDP sugars predicted that UDP-Glc would serve as the sole donor sugar in UGT85B1. This was substantiated by biochemical analyses. The predictive power of the model was validated by site-directed mutagenesis of selected residues and using enzyme assays. The modeling approach has provided a tool to design GTs with new desired substrate specificities for use in biotechnological applications. The modeling identified a hypervariable loop (amino acid residues 156-188) that contained a hydrophobic patch. The involvement of this loop in mediating binding of UGT85B1 to cytochromes P450, CYP79A1, and CYP71E1 within a dhurrin metabolon is discussed.
机译:植物产生大量结构多样的天然产物。它们生物合成的最后一步通常是1族糖基转移酶(GT)催化的糖基化步骤。在双色高粱中的氰化葡萄糖苷Dhurrin的生物合成中,UDP-葡萄糖基转移酶UGT85B1催化对羟基扁桃腈转化为Dhurrin。基于疏水簇分析和两个细菌GTs,GtfA和GtfB的晶体结构,建立了UGT85B1的结构模型,这两个细菌GTs与UGT85B1的总体氨基酸序列同一性大约为15%。该模型可以预测对催化和糖供体特异性重要的氨基酸残基。预测对羟基扁桃腈和UDP-葡萄糖(Glc)位于与位置410处的谷氨酸残基氢键键合的距离内,从而促进糖的转移。受体在范德华距离组氨酸H23的距离内堆积。丝氨酸S391和精氨酸R201与UDP-Glc的焦磷酸部分形成氢键,因此稳定了糖供体的结合。 UDP糖的对接预测,UDP-Glc将作为UGT85B1中唯一的供体糖。通过生化分析证实了这一点。通过对选定残基进行定点诱变和使用酶法验证了模型的预测能力。建模方法提供了一种工具,用于设计具有新的所需底物特异性的GT,用于生物技术应用。该模型确定了一个高变环(氨基酸残基156-188),其中包含一个疏水补丁。讨论了该环在Dhurrin代谢物中介导UGT85B1与细胞色素P450,CYP79A1和CYP71E1结合的过程。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号