...
首页> 外文期刊>Chemical Engineering Science >Numerical estimation of blowout, flashback, and flame position in MIT micro gas-turbine chamber
【24h】

Numerical estimation of blowout, flashback, and flame position in MIT micro gas-turbine chamber

机译:MIT微型燃气轮机室中爆燃,回火和火焰位置的数值估计

获取原文
获取原文并翻译 | 示例

摘要

Combustion of hydrogen-air mixture has been simulated numerically inside the MIT (Massachusetts Institute of Technology) micro gas-turbine chamber. Blowout, flashback, and flame position have been studied for different equivalence ratios. Some of the considerations in this simulation are applying a 9-species, 19-step hydrogen-air reaction mechanism, thermal coupling of reacting flow and solid structure of the combustor, considering radiation and convection heat loss from the outer surface of the combustor, and exerting physical boundary conditions on 3D geometry of the combustion chamber. To solve the simulating equations for 3D computational fluid dynamics model, finite volume method has been implemented, and parallel processing has been performed on 6 compute nodes. To validate employed simulating models, the simulation results have been compared with experiment results reported from MIT laboratory and also with simulation results obtained by another research team. The comparison shows that using eddy dissipation concept model (EDC) with disabled turbulence productions and turbulent viscosity terms in k and ε transport equations and solving equations with remaining terms can predict range of mass flow for stable combustion much closer to experimental results (more than 200% improvement in simulation results), which implies that it can be considered as a relatively reliable method for modeling mean reaction rate of micro-combustion.
机译:在麻省理工学院(麻省理工学院)微型燃气轮机室内对氢气-空气混合物的燃烧进行了数值模拟。对于不同的当量比,已经研究了井喷,回火和火焰位置。该模拟中的一些考虑因素是应用9种,19步的氢-空气反应机理,反应流的热耦合和燃烧器的固体结构,并考虑了来自燃烧器外表面的辐射和对流热损失,以及在燃烧室的3D几何形状上施加物理边界条件。为了求解3D计算流体动力学模型的仿真方程,实现了有限体积方法,并在6个计算节点上进行了并行处理。为了验证所使用的仿真模型,已将仿真结果与MIT实验室报告的实验结果进行了比较,并与另一研究小组获得的仿真结果进行了比较。比较表明,使用具有k和ε输运方程的紊流产生和湍流粘度项的涡流消散概念模型(EDC),并使用剩余项求解方程可以预测稳定燃烧的质量流量范围(更接近于200)模拟结果的改善百分比),这意味着可以将其视为模拟微燃烧平均反应速率的相对可靠方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号