...
首页> 外文期刊>Chemical Engineering Science >Designing biological systems: Systems Engineering meets Synthetic Biology
【24h】

Designing biological systems: Systems Engineering meets Synthetic Biology

机译:设计生物系统:系统工程符合合成生物学

获取原文
获取原文并翻译 | 示例

摘要

Synthetic Biology offers qualitatively new perspectives on the benefits of industrially harnessed biological processes. The ability to modify and reprogramme natural biology increases the scope of tailored bioprocesses and yields attractive prospects beyond conventional Biotechnology. The present review summarises the major achievements and categorises them according to a hierarchy of system levels. Similar structures are known in the engineering sciences and might prove useful for the future development of Synthetic Biology. The hierarchy encompasses several levels of detail. Biological (macro-)molecules present the most detailed level (parts), followed by compartmentalised or non-compartmentalised modules (devices). In the next level, parts and devices are combined into functional cells and further into cellular communities. The manifold interactions between biological entities of the same hierarchical level or between different levels are accounted for by networks, primarily metabolic pathways and regulatory circuits. Networks of different types are represented as a superordinate hierarchical level that achieves full system integration. On all these levels, extensive and sound scientific foundations exist regarding experimental but also theoretical methods. These have led to diverse manifestations of Synthetic Biology on the parts and devices levels. Investigations involving synthetic components on the systems scale represent the most difficult and remain limited in number. A main challenge lies with the quantitative prediction of interactions between different entities across different scales. Systems-theoretical approaches provide important tools to analyse complex biological behaviour and can support the design of artificial biological systems. A promising strategy is seen in an efficient modularisation that reduces biological systems to a limited set of functional modules with well-characterised interfaces. For the design of synthetic biological systems the interactions across these interfaces should be standardised to reduce complexity. Yet, the identification of modules and standardised interaction routes remains a non-trivial problem. Furthermore, an appropriate platform that efficiently describes replication and evolutionary processes has to be developed in order to extend the achievements of Synthetic Biology into designed biological processes.
机译:合成生物学对工业利用的生物过程的益处提供了定性的新观点。修改和重新编程自然生物学的能力增加了定制生物过程的范围,并产生了超越常规生物技术的诱人前景。本综述总结了主要成就,并根据系统级别的层次将其分类。类似的结构在工程科学中是已知的,并且可能被证明对合成生物学的未来发展有用。层次结构包含几个详细级别。生物(大分子)呈现最详细的水平(部分),然后是分隔的或非分隔的模块(设备)。在下一级别,零件和设备被组合成功能性细胞,并进一步进入细胞群落。相同层级或不同层级的生物实体之间的多重相互作用是通过网络(主要是代谢途径和调节回路)来解释的。不同类型的网络表示为实现完全系统集成的上级层次结构。在所有这些级别上,存在关于实验方法以及理论方法的广泛而健全的科学基础。这些导致了合成生物学在零件和设备层面的多样化表现。在系统规模上涉及合成组件的研究最为困难,而且数量仍然有限。一个主要的挑战在于对不同规模的不同实体之间相互作用的定量预测。系统理论方法提供了分析复杂生物学行为的重要工具,并且可以支持人工生物学系统的设计。在有效的模块化中看到了一种有前途的策略,该模块化将生物系统简化为功能有限的功能模块集,并具有良好的接口。对于合成生物系统的设计,应该标准化这些接口之间的交互以减少复杂性。然而,模块和标准化交互路径的识别仍然是一个不小的问题。此外,必须开发一种有效描述复制和进化过程的适当平台,以将合成生物学的成果扩展到设计的生物过程中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号