【24h】

The many-body physics of composite bosons

机译:复合玻色子的多体物理

获取原文
获取外文期刊封面目录资料

摘要

Since, up to now existing many-body theories for quantum particles were restricted to elementary fermions or elementary bosons, the treatment of interactions between composite quantum particles was only approximate. The many-body theory we describe in this Report thus constitutes a significant advance as it allows us to treat composite bosons made of two fermions as an entity, while dealing with their underlying fermionic components exactly. Pauli exclusion principle between fermions of two composite bosons appears through a set ofdimensionless "Pauli scatterings" which correspond to fermion exchanges between composite bosons, in the absence of fermion interaction. In addition to these Pauli scatterings, composite bosons also have "interaction scatterings" in which composite bosons interact through the bare interactions of their elementary fermions, in the absence of fermion exchange. These two scatterings formally appear through a set of four commutators. They allow us to write any physical quantity dealing with N composite bosons in terms of these two scatterings. To visualize the physical processes which take place between composite bosons, new diagrams have been constructed. These are called "Shiva diagrams". They explicitly show all possible fermion exchanges taking place between any number N >= 2 of composite bosons: this is reasonable since the Pauli exclusion principle from which they originate is N-body in essence. Shiva diagrams also are quite valuable as they allow us to readily calculate any many-body effect between N composite bosons. While these ideas can be extended to more complicated composite quantum particles, in particular to composite fermions, the present work concentrates on composite bosons made of two fermions. Up to now, we have mostly used this formalism to study semiconductor excitons: along with hydrogen atoms, excitons are the simplest of all composite bosons - just one electron and one hole with Coulomb interaction. The end of this report is dedicated to several problems dealing with excitons, to highlight how this new many-body theory can be used in practice.
机译:由于直到现在,有关量子粒子的多体理论仅限于基本费米子或基本玻色子,因此对复合量子粒子之间相互作用的处理仅是近似的。因此,我们在本报告中描述的多体理论构成了重大进步,因为它使我们可以将由两个费米子组成的复合玻色子作为一个实体,同时准确地处理其潜在的费米离子成分。两个复合玻色子的费米子之间的保利排斥原理通过一组无量纲的“泡利散射”出现,这与复合玻色子之间的费米子交换相对应,而没有费米子相互作用。除了这些泡利散射之外,复合玻色子还具有“相互作用散射”,其中复合玻色子在没有费米子交换的情况下通过其基本费米子的裸露相互作用而相互作用。这两个散射通过一组四个换向器正式出现。它们使我们能够根据这两个散射来写出与N个复合玻色子有关的任何物理量。为了可视化复合玻色子之间发生的物理过程,已构建了新图。这些被称为“ Shiva图”。它们明确显示了在任何数量N> = 2的复合玻色子之间发生的所有可能的费米子交换:这是合理的,因为它们起源的保利排斥原理本质上是N体。 Shiva图也非常有价值,因为它们使我们能够轻松计算N个复合玻色子之间的任何多体效应。虽然这些想法可以扩展到更复杂的复合量子粒子,特别是复合费米子,但目前的工作集中在由两个费米子组成的复合玻色子上。到目前为止,我们主要使用这种形式主义来研究半导体激子:与氢原子一起,激子是所有复合玻色子中最简单的-仅一个电子和一个具有库仑相互作用的空穴。本报告的结尾专门讨论与激子有关的几个问题,以突出说明如何在实践中使用这种新的多体理论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号