...
首页> 外文期刊>Physics Reports: A Review Section of Physics Letters (Section C) >A tutorial on dynamical systems concepts applied to Lagrangian transport in oceanic flows defined as finite time data sets: Theoretical and computational issues
【24h】

A tutorial on dynamical systems concepts applied to Lagrangian transport in oceanic flows defined as finite time data sets: Theoretical and computational issues

机译:应用于海洋流中定义为有限时间数据集的拉格朗日输运动力学系统概念的教程:理论和计算问题

获取原文
           

摘要

In the past 15 years the framework and ideas from dynamical systems theory have been applied to a variety of transport and mixing problems in oceanic flows. The motivation for this approach comes directly from advances in observational capabilities in oceanography (e.g., drifter deployments, remote sensing capabilities, satellite imagery, etc.) which reveal space-time structures that are highly suggestive of the structures one visualizes in the global, geometrical study of dynamical systems theory. In this tutorial, we motivate this approach by showing the relationship between fluid transport in two-dimensional time-periodic incompressible flows and the geometrical structures that exist for two-dimensional area-preserving maps, such as hyperbolic periodic orbits, their stable and unstable manifolds and KAM (Kolmogorov-Arnold-Moser) tori. This serves to set the stage for the attempt to "transfer" this approach to more realistic flows modelling the ocean. However, in order to accomplish this several difficulties must be overcome. The first difficulty that confronts us that any attempt to carry out a dynamical systems approach to transport requires us to obtain the appropriate "dynamical system", which is the velocity field describing the fluid flow. In general, adequate model velocity fields are obtained by numerical solution of appropriate partial differential equations describing the dynamical evolution of the velocity field. Numerical solution of the partial differential equations can only be done for a finite time interval, and since the ocean is generally not time-periodic, this leads to a new type of dynamical system: a finite-time, aperiodically time-dependent velocity field defined as a data set on a space-time grid. The global, geometrical analysis of transport in such dynamical systems requires both new concepts and new analytical and computational tools, as well as the necessity to discard some of the standard ideas and results from dynamical systems theory. The purpose of this tutorial is to describe these new concepts and analytical tools first using simple dynamical systems where quantities can be computed exactly. We then discuss their computational implications and implementation in the context of a model geophysical flow: a turbulent wind-driven double-gyre in the quasi geostrophic approximation. (c) 2006 Elsevier B.V. All rights reserved.
机译:在过去的15年中,动力学系统理论的框架和思想已应用于各种海洋流中的运输和混合问题。这种方法的动机直接来自海洋学观测能力的进步(例如,漂流器的部署,遥感能力,卫星图像等),这些发现揭示了时空结构,这些结构高度暗示了人们在全球,几何学中可视化的结构动力系统理论研究。在本教程中,我们通过显示二维时间周期不可压缩流中的流体输运与二维面积守恒图所存在的几何结构(例如双曲周期轨道,其稳定和不稳定流形)之间的关系来激发这种方法。和KAM(Kolmogorov-Arnold-Moser)托里。这为为将这种方法“转移”到更逼真的海洋建模过程中奠定了基础。但是,为了实现这一点,必须克服几个困难。我们面临的第一个困难是,任何尝试执行动力系统方法进行运输的尝试都要求我们获得适当的“动力系统”,即描述流体流动的速度场。通常,通过描述速度场动态演化的适当偏微分方程的数值解获得适当的模型速度场。偏微分方程的数值解只能在有限的时间间隔内完成,并且由于海洋通常不是时间周期的,因此导致了一种新型的动力系统:定义了有限时间,非周期时间相关的速度场作为时空网格上的数据集。在这种动力系统中,对运输进行全局的几何分析既需要新的概念,又需要新的分析和计算工具,并且有必要丢弃动力系统理论中的一些标准思想和结果。本教程的目的是首先使用简单的动力学系统来描述这些新概念和分析工具,在该系统中可以精确计算数量。然后,我们在模型地球物理流的背景下讨论它们的计算含义和实现:准地转近似中的湍流风动双旋流。 (c)2006 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号