首页> 外文期刊>Physics Reports: A Review Section of Physics Letters (Section C) >Ultrafast excitation energy transfer dynamics in photosynthetic pigment-protein complexes [Review]
【24h】

Ultrafast excitation energy transfer dynamics in photosynthetic pigment-protein complexes [Review]

机译:光合作用色素-蛋白质复合物的超快激发能转移动力学[综述]

获取原文
获取外文期刊封面目录资料

摘要

Photosynthetically active membranes of certain bacteria and higher plants contain antenna systems which surround the reaction center to increase its absorption cross section for the incoming sun light. The excitation energy created in the antenna pigments is transferred via an exciton mechanism to the reaction center where charge separation takes place. Sub-picosecond laser spectroscopy makes it possible;to follow the initial dynamic events of excitation energy (exciton) motion and exciton relaxation in real time. On the other hand, the success of structure resolution opened the door to the microscopic understanding of spectroscopic data and to an appreciation of the structure-function relationship realized in different systems. Here, it will be demonstrated how the combination of microscopically based theoretical models and numerical simulations pave the road from spectroscopic data to a deeper understanding of the functionality of photosynthetic antenna systems. The density matrix technique is introduced as the theoretical tool providing a unified description of the processes which follow ultrafast laser excitation. This includes in particular coherent exciton motion, vibrational coherences, exciton relaxation, and exciton localization. It can be considered as a major result of recent investigations that a theoretical model of intermediate complexity was shown to be suitable to explain a variety of experiments on different photosynthetic antenna systems. We start with introducing the structural components of antenna systems and discuss their general function. In the second part the formulation of the appropriate theoretical model as well as the simulation of optical spectra is reviewed in detail. Emphasis is put on the mapping of the complex protein structure and its hierarchy of dynamic phenomena onto models of static and dynamic disorder. In particular, it is shown that the protein spectral density plays a key role in characterizing excitation energy dissipation. The theoretical concepts are illustrated in the third part by results of numerical simulations of linear and nonlinear optical experiments for three types of antennae: the peripheral light-harvesting complex 2 of purple bacteria, the Fenna-Mathew-Olson complex of green bacteria, and the light-harvesting complex of photosystem II of green plants. (C) 2001 Elsevier Science B.V. All rights reserved. [References: 234]
机译:某些细菌和高等植物的光合作用活性膜包含围绕反应中心的天线系统,以增加其对入射太阳光的吸收截面。在天线色素中产生的激发能通过激子机制转移到发生电荷分离的反应中心。亚皮秒激光光谱技术使之成为可能;可以实时跟踪激发能(激子)运动和激子弛豫的初始动态事件。另一方面,结构解析的成功打开了对光谱数据的微观理解和对在不同系统中实现的结构-功能关系的认识的大门。在这里,将展示基于微观的理论模型和数值模拟的结合如何为从光谱数据到深入了解光合天线系统功能铺平道路。引入密度矩阵技术作为理论工具,对超快激光激发后的过程进行了统一描述。这尤其包括相干激子运动,振动相干,激子弛豫和激子局部化。可以认为是最近研究的主要结果,显示出中等复杂度的理论模型适合于解释在不同光合天线系统上进行的各种实验。我们从介绍天线系统的结构组件开始,并讨论它们的一般功能。在第二部分中,详细讨论了合适的理论模型的制定以及光谱模拟。重点是将复杂蛋白质结构及其动态现象的层次结构映射到静态和动态障碍模型上。特别地,显示出蛋白质光谱密度在表征激发能量耗散中起关键作用。第三部分通过对三种类型的天线进行线性和非线性光学实验的数值模拟结果来说明理论概念:三种细菌的外围光捕获复合体2,绿色细菌的Fenna-Mathew-Olson复合体以及绿色植物光系统II的采光复合体。 (C)2001 Elsevier Science B.V.保留所有权利。 [参考:234]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号