首页> 外文期刊>Physics Reports: A Review Section of Physics Letters (Section C) >Interplay of electron-phonon interaction and strong correlations: the possible way to high-temperature superconductivity [Review]
【24h】

Interplay of electron-phonon interaction and strong correlations: the possible way to high-temperature superconductivity [Review]

机译:电子-声子相互作用和强相关性的相互作用:高温超导性的可能途径[综述]

获取原文
           

摘要

The pairing mechanism in high-T-c-superconductors (HTS) is still, 13 years after the discovery of HTS, under dispute. However, there are experimental evidences that the electron-phonon (E-P) interaction together with strong electronic correlations plays a decisive role in the formation of the normal state and superconductivity. Tunneling spectroscopy shows clear phonon features in the conductance and together with infrared and Raman optic measurements give strong support for the electron-phonon interaction as the pairing mechanism in HTS oxides. The tunneling experiments show also that almost all phonons contribute to the pairing interaction and the E-P interaction is sufficiently large to produce T-c similar to 100 K. The strong E-P interaction is due to (a) the layered and almost ionic-metallic structure of HTS oxides; (b) the almost two-dimensional motion of conduction carriers, which give rise to large contribution of the Madelung energy in the E-P interaction, especially for axial phonons. On the other hand, a variety of phase-sensitive measurements give support for d-wave pairing in HTS oxides, which has been usually interpreted to be due to the spin-fluctuation mechanism. We argue in this review that contrary to low-T-c-superconductors (LTS), where the phonon mechanism leads to a-wave pairing, strong electronic correlations in HTS oxides renormalize the electron-phonon (E-P) interaction, as well as other electron-boson scattering processes related to charge fluctuations, in such a way that the forward scattering peak (FSP) appears, while the backward scattering is suppressed. The FSP mechanism is also supported by the long-range Madelung E-P interaction and the former is pronounced for smaller hole doping delta 1. The renormalization of the E-P interaction and other charge scattering processes (like impurity scattering) by strong correlations gives rise to (i) a significant (relative) increase of the coupling constant for d-wave pairing lambda(d) making lambda(d) approximate to lambda(s) for delta less than or equal to 0.2, where lambda(s) is the coupling for a-wave pairing. The residual Coulomb repulsion between quasiparticles (or the interaction via spin fluctuations, which is peaked in the "backward" scattering at Q approximate to (pi, pi)) triggers the system to d-wave pairing, while T-c is dominantly due to the E-P interaction; (ii) a reduction (with respect to the pairing coupling constant lambda) of the transport E-P coupling constant lambda(tr)(less than or similar to lambda/3), i.e. to the quenching of the resistivity rho(T) where rho similar to lambda(tr)T for T > Theta(D)/5; (iii) a suppression of the residual quasiparticle scattering on nonmagnetic impurities; (iv) robustness of d-wave pairing in the presence of nonmagnetic impurities and (v) nonadiabatic corrections to the E-P interaction and accordingly to a possible increase of T-c in systems with omega(D) less than or similar to E-F Furthermore, the development of the forward scattering peak in the E-P interaction of the optimally hole-doped HTS oxides gives rise, besides the d-wave superconductivity, also to (a) the small isotope effect; and (b) the strong temperature dependence of the gap anisotropy. In the overdoped oxides the FSP mechanism and spin fluctuations are suppressed which leads to (a) anisotropic a-wave pairing with moderate gap anisotropy, and (b) an increase of the isotope effect. (C) 2000 Elsevier Science B.V. All rights reserved. [References: 509]
机译:在发现高温超导超导体(HTS)13年之后,高T-c超导体的配对机制仍然存在争议。但是,有实验证据表明,电子-声子(E-P)相互作用以及强电子相关性在正常状态和超导性的形成中起着决定性的作用。隧道光谱显示出电导中清晰的声子特征,并结合红外和拉曼光学测量为HTS氧化物中的配对机理提供了电子-声子相互作用的有力支持。隧穿实验还表明,几乎所有的声子都有助于配对相互作用,并且EP相互作用足够大,以产生类似于100 K的Tc。强的EP相互作用归因于(a)HTS氧化物的层状和几乎离子-金属结构; (b)传导载体的几乎二维运动,这引起了马德隆能量在E-P相互作用中的巨大贡献,特别是对于轴向声子。另一方面,各种对相位敏感的测量结果为HTS氧化物中的d波对提供了支持,这通常被解释为是由于自旋涨落机制引起的。在这篇评论中,我们认为,与低Tc超导体(LTS)相反,在LTS中,声子机制导致a波配对,HTS氧化物中的强电子相关性使电子-声子(EP)相互作用重新规范化,以及其他电子-玻色子散射过程与电荷起伏有关,其方式是出现前向散射峰(FSP),同时抑制后向散射。 FSP机制还受到远程Madelung EP相互作用的支持,而前者在较小的空穴掺杂δ 1方面表现突出。通过强相关性对EP相互作用和其他电荷散射过程(例如杂质散射)的重新归一化导致了(i)d波配对lambda(d)的耦合常数显着(相对)增加,使得delta小于或等于0.2的lambda(d)近似于lambda,其中lambda是耦合进行波配对。准粒子之间的残留库仑排斥力(或通过自旋涨落的相互作用,在Q的“向后”散射中达到峰值,近似于(pi,pi))触发系统与d波配对,而Tc则主要归因于EP相互作用; (ii)传输EP耦合常数lambda(tr)(小于或类似于lambda / 3)的减小(相对于配对耦合常数λ),即电阻率rho(T)的猝灭,其中rho相似到lambda(tr)T等于T> Theta(D)/ 5; (iii)抑制在非磁性杂质上残留的准粒子散射; (iv)在存在非磁性杂质的情况下d波配对的鲁棒性,以及(v)对EP相互作用的非绝热校正,因此在omega(D)小于或类似于EF的系统中Tc可能会增加。最佳掺杂空穴的HTS氧化物的EP相互作用中的正向散射峰的产生,除了d波超导性之外,还引起(a)小同位素效应; (b)间隙各向异性的强烈温度依赖性。在过量掺杂的氧化物中,FSP机理和自旋波动受到抑制,这导致(a)具有中等间隙各向异性的各向异性a波对,以及(b)同位素效应的增强。 (C)2000 Elsevier Science B.V.保留所有权利。 [参考:509]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号