首页> 外文期刊>Physics Reports: A Review Section of Physics Letters (Section C) >Chromophore-specific theoretical spectroscopy: From subsystem density functional theory to mode-specific vibrational spectroscopy
【24h】

Chromophore-specific theoretical spectroscopy: From subsystem density functional theory to mode-specific vibrational spectroscopy

机译:发色团特定的理论光谱:从子系统密度泛函理论到模式特定的振动光谱

获取原文
获取外文期刊封面目录资料

摘要

Spectroscopy forms the bridge between theory and experiment in the analysis of structure, properties, and reactivity of functional molecules and molecular aggregates. Our knowledge on the basic working principles of systems such as photosynthetic units strongly relies on spectroscopic information, which is interpreted in terms of molecular or submolecular building blocks. To choose such entities as the essential ingredients in a quantum chemical framework is thus a promising route to the theoretical spectroscopy of complex systems. This work describes developments of chromophore-specific quantum chemical methods, which focus on relevant substructures without sacrificing the view on the entire system. A subsystem density-functional theory approach is analyzed that employs a realspace partitioning of the electron density for the description of complex aggregates in terms of simple fragments. This approach can be used as a chromophore-specific embedding method and allows for efficient and accurate analyses of environmental effects. However, it fails for phenomena caused by a collective response of an aggregate of molecules. The limitations of this embedding scheme can be overcome by a general subsystem approach to time-dependent density functional theory, which easily relates to phenomenological theories such as excitonic coupling models. Resonance Raman spectroscopy can be used to probe local excited states in larger molecules and is thus intrinsically chromophore-specific. It is shown that well-known approximations for resonance Raman calculations can efficiently be used with timedependent density-functional theory methods to study photochemical and photophysical processes in large molecules such as artificial photosynthetic systems. Intensity-driven approaches to resonance Raman calculations can exploit the selectivity observed in experiments for an iterative determination of high-intensity spectral features. Applications of such schemes to biochemical building blocks are discussed.
机译:光谱学在功能分子和分子聚集体的结构,性质和反应性分析中形成了理论与实验之间的桥梁。我们对系统(例如光合作用单元)的基本工作原理的了解强烈依赖于光谱信息,这些信息是根据分子或亚分子构建基块进行解释的。因此,选择这样的实体作为量子化学框架中的基本成分是通往复杂系统理论光谱学的有前途的途径。这项工作描述了生色团特定的量子化学方法的发展,该方法着重于相关的亚结构而不牺牲整个系统的视野。分析了子系统密度泛函理论方法,该方法采用电子密度的实空间划分来描述根据简单片段的复杂聚集体。这种方法可以用作生色团特定的嵌入方法,并可以对环境影响进行有效而准确的分析。但是,它不能解决由分子聚集的集体反应引起的现象。这种嵌入方案的局限性可以通过基于时间的密度泛函理论的通用子系统方法来克服,该方法很容易与现象学理论(如激子耦合模型)相关。共振拉曼光谱可用于探测较大分子中的局部激发态,因此本质上是生色团特异性的。结果表明,众所周知的共振拉曼计算近似值可与时变密度泛函理论方法有效地用于研究大分子(如人工光合作用系统)中的光化学和光物理过程。强度驱动的共振拉曼计算方法可以利用在实验中观察到的选择性来迭代确定高强度光谱特征。讨论了这种方案在生化基础上的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号