...
首页> 外文期刊>Physics of plasmas >Recent developments in collisionless reconnection theory: Applications to laboratory and space plasmas
【24h】

Recent developments in collisionless reconnection theory: Applications to laboratory and space plasmas

机译:无碰撞重新连接理论的最新进展:在实验室和空间等离子体中的应用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Recent developments in the theory and simulation of nonlinear collisionless reconnection hold the promise for providing solutions to some outstanding problems in laboratory and space plasma physics. Examples of such problems are sawtooth oscillations in tokamaks, magnetotail substorms, and impulsive solar flares. In each of these problems, a key issue is the identification of fast reconnection rates that are insensitive to the mechanism that breaks field lines (resistivity and/or electron inertia). The classical models of Sweet-Parker and Petschek sought to resolve this issue in the realm of resistive magnetohydrodynamics (MHD). However, the plasmas mentioned above are weakly collisional, and hence obey a generalized Ohm's law in which the Hall current and electron pressure gradient terms play a crucial role. Recent theoretical models and simulations on impulsive (or triggered) as well as quasisteady reconnection governed by a generalized Ohm's law are reviewed. In the impulsive reconnection problem, not only is the growth rate fast but the time derivative of the growth rate changes rapidly. In the steady-state reconnection problem, explicit analytical expressions are obtained for the geometric characteristics (that is, length and width) of the reconnection layer and the reconnection rate. Analytical results are tested by Hall MHD simulations. While some of the geometric features of the reconnection layer and the weak dependence of the reconnection rate on resistivity are reminiscent of Petschek's classical model, the underlying wave and particle dynamics mediating the reconnection dynamics in the presence of the Hall current and electron pressure gradient are qualitatively different. Quantitative comparisons are made between theory and observations from laboratory as well as space plasmas. (C) 2001 American Institute of Physics. [References: 57]
机译:非线性无碰撞重新连接理论和仿真的最新发展有望为解决实验室和空间等离子体物理中的一些突出问题提供解决方案。这样的问题的例子是托卡马克中的锯齿形振动,磁尾亚暴和脉冲性太阳耀斑。在每个这些问题中,关键问题是确定快速重新连接速率,该速率对断开磁场线的机制(电阻率和/或电子惯性)不敏感。 Sweet-Parker和Petschek的经典模型试图在电阻磁流体动力学(MHD)领域解决这个问题。但是,上述等离子体具有弱碰撞性,因此服从广义欧姆定律,其中霍尔电流和电子压力梯度项起着至关重要的作用。综述了有关由广义欧姆定律控制的脉冲(或触发)以及准稳态重新连接的最新理论模型和仿真。在脉冲重新连接问题中,不仅增长率快,而且时间的时间导数也迅速变化。在稳态重新连接问题中,针对重新连接层的几何特征(即长度和宽度)和重新连接速率获得了明确的解析表达式。分析结果通过霍尔MHD模拟进行测试。虽然重新连接层的某些几何特征以及重新连接速率对电阻率的依赖性较弱,这使人联想到Petschek的经典模型,但在霍尔电流和电子压力梯度存在的情况下,介导重新连接动力学的基本波和粒子动力学定性地不同。在理论和实验室以及太空等离子体观测之间进行了定量比较。 (C)2001美国物理研究所。 [参考:57]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号