首页> 外文期刊>Physics of plasmas >Fast reconnection in relativistic pair plasmas: Analysis of particle acceleration in self-consistent full particle simulations
【24h】

Fast reconnection in relativistic pair plasmas: Analysis of particle acceleration in self-consistent full particle simulations

机译:相对论对等离子体中的快速重新连接:自洽全粒子模拟中的粒子加速度分析

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Particle acceleration in collisionless magnetic reconnection is studied in the relativistic regime of an electron-positron plasma. For the first time, the highly dynamic late-time evolution of reconnection is simulated in two dimensions (2D) and the finite size of the acceleration region is resolved in 3D applying a fully electromagnetic relativistic particle-in-cell (PIC) code. The late-time evolution is extremely important with respect to particle acceleration, because thin current sheets show a highly dynamic late-time phase with instabilities evolving in the Alfven velocity v(A0) regime. Consequently, since csimilar tov(A0) is valid as a peculiarity of pair plasmas, vxB-contributions become dominant in the accelerating electric field. Most remarkable: Though acceleration regions are highly variable at late times, the power-law shape of the particle energy distribution is smoothed compared to quasi-static reconnection configurations at early times [S. Zenitani and M. Hoshino, Astrophys. J. 562, L63 (2001)]. Spectral power indices of ssimilar to-3 for the complete simulation box, ssimilar to-1 within the X-zone, are preserved at late times and appear as a characteristic of pair plasma reconnection of thin current sheets! The spectral high-energy cut-off depends on the sheet width at late times and is most efficiently tuned by the ratio c/v(A0). In 3D, sheet instabilities limit the acceleration potential of a single X-zone, but current driven instabilities like the relativistic drift kink mode can also significantly contribute to particle acceleration. Via the analysis of particle trajectories, the consequences of a finite 3D acceleration zone are resolved and efficient acceleration mechanisms in the context of dynamic X-points are identified. (C) 2004 American Institute of Physics.
机译:在电子-正电子等离子体的相对论状态下研究了无碰撞磁重连接中的粒子加速度。首次在二维(2D)中模拟了重新连接的高动态后期演变,并使用完全电磁相对论单元内粒子(PIC)代码在3D中解析了加速区域的有限大小。相对于粒子加速度而言,后期演化极为重要,因为薄电流片显示出高度动态的后期阶段,并且在Alfven速度v(A0)范围内具有不稳定性。因此,由于与v(A0)相似,作为成对等离子体的特质是有效的,因此vxB贡献在加速电场中占主导地位。最引人注目的是:尽管加速区域在后期变化很大,但与早期的准静态重新连接配置相比,粒子能量分布的幂律形状更加平滑[S. Zenitani和星野M. [J.562,L63(2001)]。整个模拟盒的光谱功率指数大约为3,X区域内的光谱功率指数大约为1,这些光谱功率指数在后期得以保留,并表现为薄电流片对等离子体重新连接的特征!光谱高能截止值取决于后期的纸张宽度,并通过比率c / v(A0)最有效地进行调谐。在3D中,薄片不稳定性会限制单个X区域的加速潜力,但是电流驱动的不稳定性(例如相对论漂移扭结模式)也可以极大地促进粒子加速。通过对粒子轨迹的分析,解决了有限的3D加速区的后果,并确定了动态X点背景下的有效加速机制。 (C)2004美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号