首页> 外文期刊>Physics of plasmas >Properties of Hall magnetohydrodynamic waves modified by electron inertia and finite Larmor radius effects
【24h】

Properties of Hall magnetohydrodynamic waves modified by electron inertia and finite Larmor radius effects

机译:电子惯性和有限拉莫尔半径效应修正的霍尔磁流体动力学波的性质

获取原文
获取原文并翻译 | 示例
           

摘要

The linear wave equation (sixth order in space and time) and the corresponding dispersion relation is derived for Hall magnetohydrodynamic (MHD) waves including electron inertial and finite Larmor radius effects together with several limiting cases for a homogeneous plasma. We contrast these limits with the solution of the full dispersion relation in terms of wave normal (k(perpendicular to),k(arallel to>)) diagrams to clearly illustrate the range of applicability of the individual approximations. We analyze the solutions in terms of all three MHD wave modes (fast, slow, and Alfveacuten), with particular attention given to how the Alfveacuten branch (including the cold ideal field line resonance (FLR) [D. J. Southwood, Planet. Space Sci. 22, 483 (1974)]) is modified by the Hall term and electron inertial and finite Larmor radius effects. The inclusion of these terms breaks the degeneracy of the Alfveacuten branch in the cold plasma limit and displaces the asymptote position for the FLR to a line defined by the electron thermal speed rather than the Alfveacuten speed. For a driven system, the break in this degeneracy implies that a resonance would form at one field line for small k(perpendicular to) and then shift to another as k(perpendicular to)->infinity. However for very large omega k(perpendicular to)/V-A, Hall term effects lead to a coupling to the whistler mode, which would then transport energy away from the resonant layer. The inclusion of the Hall term also significantly effects the characteristics of the slow mode. This analysis reveals an interesting "swapping" of the perpendicular root behavior between the slow and Alfveacuten branches.
机译:对于霍尔磁流体动力学(MHD)波,包括电子惯性和有限的拉莫尔半径效应以及同质等离子体的几种极限情况,推导了线性波方程(时空六阶)和相应的色散关系。我们用波法线图(k(垂直于),k(<平行于>))的全色散关系的解决方案来比较这些限制,以清楚地说明各个近似值的适用范围。我们根据所有三种MHD波模式(快速,慢速和Alfveacuten)分析解决方案,并特别关注Alfveacuten分支的方式(包括冷的理想场线共振(FLR)[DJ Southwood,Planet。Space Sci。 22,483(1974)])由霍尔项以及电子惯性和有限拉莫尔半径效应进行了修改。这些术语的包含打破了冷等离子体极限中Alfveacuten分支的简并性,并将FLR的渐近线位置移动到由电子热速度而不是Alfveacuten速度定义的线。对于驱动系统,这种简并性的中断意味着对于一个小的k(垂直于),在一个磁场线上会形成一个共振,然后以k(垂直于)无限大的方式转移到另一场。但是,对于非常大的欧米茄k(垂直于)/ V-A,霍尔项效应会导致与惠斯勒模式的耦合,从而将能量从谐振层传输出去。霍尔项的包含也会显着影响慢速模式的特性。该分析揭示了慢速分支和Alfveacuten分支之间的垂直根行为的有趣“交换”。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号