...
首页> 外文期刊>Physical review, E >Feedback control stabilization of critical dynamics via resource transport on multilayer networks: How glia enable learning dynamics in the brain
【24h】

Feedback control stabilization of critical dynamics via resource transport on multilayer networks: How glia enable learning dynamics in the brain

机译:通过多层网络上的资源传输对关键动力学进行反馈控制的稳定化:神经胶质细胞如何在大脑中实现学习动力学

获取原文
获取原文并翻译 | 示例

摘要

Learning and memory are acquired through long-lasting changes in synapses. In the simplest models, such synaptic potentiation typically leads to runaway excitation, but in reality there must exist processes that robustly preserve overall stability of the neural system dynamics. How is this accomplished? Various approaches to this basic question have been considered. Here we propose a particularly compelling and natural mechanism for preserving stability of learning neural systems. This mechanism is based on the global processes by which metabolic resources are distributed to the neurons by glial cells. Specifically, we introduce and study a model composed of two interacting networks: a model neural network interconnected by synapses that undergo spike-timing- dependent plasticity; and a model glial network interconnected by gap junctions that diffusively transport metabolic resources among the glia and, ultimately, to neural synapses where they are consumed. Our main result is that the biophysical constraints imposed by diffusive transport of metabolic resources through the glial network can prevent runaway growth of synaptic strength, both during ongoing activity and during learning. Our findings suggest a previously unappreciated role for glial transport of metabolites in the feedback control stabilization of neural network dynamics during learning.
机译:学习和记忆是通过长期的突触变化获得的。在最简单的模型中,这种突触增强通常会导致失控的兴奋,但实际上,必须存在能够稳健地保持神经系统动力学整体稳定性的过程。这是如何完成的?已经考虑了解决该基本问题的各种方法。在这里,我们提出了一种特别引人注目的自然机制,用于保持学习神经系统的稳定性。该机制基于通过胶质细胞将代谢资源分配到神经元的全局过程。具体来说,我们介绍和研究一个由两个相互作用的网络组成的模型:一个模型神经网络,该网络由经历了与时序相关的可塑性的突触互连。以及通过间隙连接相互连接的模型神经胶质网络,该间隙连接在神经胶质中扩散代谢资源,并最终将其消耗到神经突触中。我们的主要结果是,代谢资源通过神经胶质网络的扩散运输所施加的生物物理约束,可以防止持续活动和学习过程中突触强度的失控增长。我们的发现表明,在学习过程中,神经胶质在代谢的神经胶质运输的反馈控制稳定中起着前所未有的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号