首页> 外文期刊>Physical Review, B. Condensed Matter >RAMAN SPECTROSCOPY STUDY OF ZNSE AND ZN0.84FE0.16SE AT HIGH PRESSURES
【24h】

RAMAN SPECTROSCOPY STUDY OF ZNSE AND ZN0.84FE0.16SE AT HIGH PRESSURES

机译:ZNSE和ZN0.84FE0.16SE在高压下的拉曼光谱研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The ZnSe powder and Zn0.84Fe0.16Se crystal were studied by Raman scattering spectroscopy at pressures up to 36.0 and 32.0 GPa, respectively. For ZnSe powder at 4.7 and 9.1 GPa, two phase transitions were observed. However, the resulted phases have not been identified yet. As the pressure was increased to 14.4 GPa, the LO phonon peak disappeared while the TO phonon peak was still visible until the metallization pressure, 17.0 GPa was reached. In addition, three unidentified Raman peaks were still observable above the metallization pressure. For Zn0.84Fe0.16Se crystal, the structure transition from possible zinc blende to sodium chloride phase (B-1) was identified by the disappearance of Fe local mode and longitudinal optical (LO) phonon mode at 10.9 GPa. In addition, an unidentified phase transition at 4.7 GPa was observed. The TO phonon and the split TO phonons were still observable at a pressure above the phase transition pressure up to 32.0 GPa. The existence of Fe impurity in the ZnSe up to a concentration of 0.16 reduced the semiconductor-metal phase transition pressure to 10.9 GPa. According to the calculation of Gruneisen parameters, Zn0.84Fe0.16Se was found to have a higher ionicity than ZnSe. Reasons for the observation of Raman peaks at a pressure above the metallization pressure are still unknown. [References: 31]
机译:通过拉曼散射光谱分别在高达36.0 GPa和32.0 GPa的压力下研究了ZnSe粉末和Zn0.84Fe0.16Se晶体。对于4.7和9.1 GPa的ZnSe粉末,观察到两个相变。但是,尚未确定结果阶段。随着压力增加到14.4 GPa,LO声子峰消失,而TO声子峰仍然可见,直到达到金属化压力17.0 GPa。另外,在金属化压力以上仍可观察到三个未确定的拉曼峰。对于Zn0.84Fe0.16Se晶体,通过在10.9 GPa处的Fe局部模式和纵向光学(LO)声子模式的消失,确定了从可能的锌共混物到氯化钠相(B-1)的结构转变。此外,在4.7 GPa处观察到不确定的相变。在高达32.0 GPa的相变压力以上的压力下,仍然可以观察到TO声子和分裂的TO声子。 ZnSe中最高浓度为0.16的Fe杂质的存在将半导体-金属的相变压力降至10.9 GPa。根据Gruneisen参数的计算,发现Zn0.84Fe0.16Se比ZnSe具有更高的离子性。在高于金属化压力的压力下观察拉曼峰的原因仍然未知。 [参考:31]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号