首页> 外文期刊>Physics of fluids >Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis
【24h】

Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis

机译:基于自适应正交小波的二维湍流非高斯相干涡模拟

获取原文
获取原文并翻译 | 示例
           

摘要

We decompose turbulent flows into two orthogonal parts: a coherent, inhomogeneous, non-Gaussian component and an incoherent, homogeneous, Gaussian component. The two components have different probability distributions and different correlations, hence different scaling laws. This separation into coherent vortices and incoherent background flow is done for each flow realization before averaging the results and calculating the next time step. To perform this decomposition we have developed a nonlinear scheme based on an objective threshold defined in terms of the wavelet coefficients of the vorticity. Results illustrate the efficiency of this coherent vortex extraction algorithm. As an example we show that in a 256~2 computation 0.7% of the modes correspond to the coherent vortices responsible for 99.2% of the energy and 94% of the enstrophy. We also present a detailed analysis of the nonlinear term, split into coherent and incoherent components, and compare it with the classical separation, e.g., used for large eddy simulation, into large scale and small scale components. We then propose a new method, called coherent vortex simulation (CVS), designed to compute and model two-dimensional turbulent flows using the previous wavelet decomposition at each time step. This method combines both deterministic and statistical approaches: (i) Since the coherent vortices are out of statistical equilibrium, they are computed deterministically in a wavelet basis which is remapped at each time step in order to follow their nonlinear motions. (ii) Since the incoherent background flow is homogeneous and in statistical equilibrium, the classical theory of homogeneous turbulence is valid there and we model statistically the effect of the incoherent background on the coherent vortices. To illustrate the CVS method we apply it to compute a two-dimensional turbulent mixing layer.
机译:我们将湍流分解为两个正交的部分:相干的,非均匀的,非高斯分量和不相干的,均匀的高斯分量。这两个分量具有不同的概率分布和不同的相关性,因此具有不同的缩放定律。在将结果取平均值并计算下一个时间步之前,针对每种流动实现将其分为相干涡旋和不相干背景流。为了进行这种分解,我们已经开发了一种基于客观阈值的非线性方案,该客观阈值是根据涡度的小波系数定义的。结果说明了这种相干涡旋提取算法的效率。例如,在256〜2计算中,有0.7%的模式对应于相干涡,它们分别占99.2%的能量和94%的涡旋。我们还提供了对非线性项的详细分析,分为相干分量和非相干分量,并将其与经典分离(例如用于大型涡流仿真的经典分离)进行了比较,将其分为大型和小型组件。然后,我们提出了一种称为相干涡旋仿真(CVS)的新方法,该方法旨在在每个时间步使用先前的小波分解来计算和建模二维湍流。这种方法结合了确定性方法和统计方法:(i)由于相干涡不在统计平衡范围内,因此它们以小波为基础进行确定性计算,并在每个时间步重新映射以遵循其非线性运动。 (ii)由于非相干背景流是均匀的并且处于统计平衡状态,因此均匀湍流的经典理论在那里是有效的,并且我们对非相干背景对相干涡旋的影响进行了统计建模。为了说明CVS方法,我们将其应用于计算二维湍流混合层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号