首页> 外文期刊>Physics of fluids >Nonlinear breakup of a coaxial liquid jet in a swirling gas stream
【24h】

Nonlinear breakup of a coaxial liquid jet in a swirling gas stream

机译:旋转气流中同轴液体射流的非线性破坏

获取原文
获取原文并翻译 | 示例
           

摘要

Nonlinear asymmetric breakup of a liquid jet exposed to a swirling gas stream is investigated by a perturbation expansion technique with the initial amplitude of the disturbance as the perturbation parameter. The effects of gas-to-liquid axial velocity ratio and gas swirl number on the liquid jet instability and breakup length have been studied. The breakup length predictions show good agreement with the available empirical correlations for liquid jet breakup in still gas as well as jet breakup in a co-flowing gas stream. Earlier linear analyses have predicted that the gas swirl has a stabilizing influence on the jet and that the axisymmetric disturbance is the most unstable disturbance compared to the helical modes. In contrast, experimental studies report that a swirl imparted on the surrounding gas makes the jet unstable, and at high gas swirl the jet disintegrates through an explosive breakup. The present nonlinear temporal analysis correctly captures the destabilizing effect of the gas swirl. With increasing gas swirl number, the helical modes become dominant and the transition to subsequent higher helical mode is achieved with smaller increments in the gas swirl number. The gas swirl number for transition to a highly asymmetric breakup with a high circumferential wave number (n=5) is found to vary as the inverse of the square root of the gas-to-liquid momentum ratio when the gas-to-liquid momentum ratio is less than 1. The jet breakup length decreases with an increase in the gas-to-liquid axial velocity ratio and the gas swirl number. (c) 2006 American Institute of Physics.
机译:通过扰动展开技术,以扰动的初始振幅作为扰动参数,研究了暴露于涡流气流的液体射流的非线性不对称破裂。研究了气液轴向速度比和气体旋流数对液体射流不稳定性和破裂长度的影响。破裂长度的预测表明与在静止气体中的液体喷射破裂以及在同流气流中的喷射破裂的可用经验相关性很好。早期的线性分析预测,气体旋流会对射流产生稳定的影响,并且与螺旋模式相比,轴对称扰动是最不稳定的扰动。相反,实验研究报告说,施加在周围气体上的涡流使射流变得不稳定,而在高气体涡流下,射流会通过爆炸破裂而分解。当前的非线性时间分析正确地捕获了气体旋流的不稳定作用。随着气体旋流数的增加,螺旋模态占优势,并且以较小的气体旋流数增量实现了向随后的较高螺旋模态的过渡。发现当向气液动量变化时,过渡到具有高周波数(n = 5)的高度不对称破裂的气体旋流数会随着气液动量比的平方根的倒数而变化比率小于1。射流的破裂长度随气液轴向速度比和气体旋流数的增加而减小。 (c)2006年美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号