首页> 外文期刊>Physics of fluids >Experimental study of vorticity-strain rate interaction in turbulent partially premixed jet flames using tomographic particle image velocimetry
【24h】

Experimental study of vorticity-strain rate interaction in turbulent partially premixed jet flames using tomographic particle image velocimetry

机译:断层成像颗粒图像测速技术在湍流部分预混射流火焰中涡度-应变率相互作用的实验研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In turbulent flows, the interaction between vorticity, omega, and strain rate, s, is considered a primary mechanism for the transfer of energy from large to small scales through vortex stretching. The omega-s coupling in turbulent jet flames is investigated using tomographic particle image velocimetry (TPIV). TPIV provides a direct measurement of the three-dimensional velocity field from which omega and s are determined. The effects of combustion and mean shear on the omega-s interaction are investigated in turbulent partially premixed methane/air jet flames with high and low probabilities of localized extinction as well as in a non-reacting isothermal air jet with Reynolds number of approximately 13 000. Results show that combustion causes structures of high vorticity and strain rate to agglomerate in highly correlated, elongated layers that span the height of the probe volume. In the non-reacting jet, these structures have a more varied morphology, greater fragmentation, and are not as well correlated. The enhanced spatiotemporal correlation of vorticity and strain rate in the stable flame results in stronger omega-s interaction characterized by increased enstrophy and strain-rate production rates via vortex stretching and straining, respectively. The probability of preferential local alignment between omega and the eigenvector of the intermediate principal strain rate, s(2), which is intrinsic to the omega-s coupling in turbulent flows, is larger in the flames and increases with the flame stability. The larger mean shear in the flame imposes a preferential orientation of omega and s(2) tangential to the shear layer. The extensive and compressive principal strain rates, s(1) and s(3), respectively, are preferentially oriented at approximately 45 degrees with respect to the jet axis. The production rates of strain and vorticity tend to be dominated by instances in which omega is parallel to the (s(1)) over bar-(s(2)) over bar plane and orthogonal to (s(3)) over bar. (C) 2016 AIP Publishing LLC.
机译:在湍流中,涡度,ω和应变率s之间的相互作用被认为是通过涡旋拉伸将能量从大尺度转移到小尺度的主要机制。使用层析粒子图像测速仪(TPIV)研究了湍流喷射火焰中的ω-s耦合。 TPIV提供对三维速度场的直接测量,从中可以确定ω和s。在高和低局部熄灭概率的湍流部分预混甲烷/空气射流火焰中,以及在雷诺数约为13000的非反应性等温空气射流中,研究了燃烧和平均剪切对ω-s相互作用的影响。结果表明,燃烧导致高涡度和应变率的结构在跨越探针体积高度的高度相关的细长层中聚集。在非反应射流中,这些结构的形态更多样化,碎片更大,并且没有很好的相关性。稳定火焰中涡度和应变率的时空相关性增强,导致欧米伽相互作用更强,其特征是通过涡旋拉伸和应变分别增加了总涡流和应变率。 ω和中间主应变率特征向量s(2)之间的局部优先对齐的可能性在湍流中是ω-s耦合固有的,在火焰中更大,并随火焰稳定性而增加。火焰中较大的平均剪切力使ω和s(2)与剪切层相切时具有优先方向。广泛的和压缩的主应变率s(1)和s(3)分别相对于射流轴大约45度取向。应变和涡度的生产率通常受以下情况控制:Ω平行于杆平面上的(s(1))-杆平面上的(s(2))且垂直于杆上的(s(3))。 (C)2016 AIP出版有限责任公司。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号