...
首页> 外文期刊>Physics of fluids >Strongly coupled fluid-particle flows in vertical channels. I. Reynolds-averaged two-phase turbulence statistics
【24h】

Strongly coupled fluid-particle flows in vertical channels. I. Reynolds-averaged two-phase turbulence statistics

机译:强耦合的流体粒子在垂直通道中流动。一,雷诺平均两相湍流统计

获取原文
获取原文并翻译 | 示例
           

摘要

Simulations of strongly coupled (i.e., high-mass-loading) fluid-particle flows in vertical channels are performed with the purpose of understanding the fundamental physics of wall-bounded multiphase turbulence. The exact Reynolds-averaged (RA) equations for high-mass-loading suspensions are presented, and the unclosed terms that are retained in the context of fully developed channel flow are evaluated in an Eulerian-Lagrangian (EL) framework for the first time. A key distinction between the RA formulation presented in the current work and previous derivations of multiphase turbulence models is the partitioning of the particle velocity fluctuations into spatially correlated and uncorrelated components, used to define the components of the particle-phase turbulent kinetic energy (TKE) and granular temperature, respectively. The adaptive spatial filtering technique developed in our previous work for homogeneous flows [J. Capecelatro, O. Desjardins, and R. O. Fox, "Numerical study of collisional particle dynamics in cluster-induced turbulence," J. Fluid Mech. 747, R2 (2014)] is shown to accurately partition the particle velocity fluctuations at all distances from the wall. Strong segregation in the components of granular energy is observed, with the largest values of particle-phase TKE associated with clusters falling near the channel wall, while maximum granular temperature is observed at the center of the channel. The anisotropy of the Reynolds stresses both near the wall and far away is found to be a crucial component for understanding the distribution of the particle-phase volume fraction. In Part II of this paper, results from the EL simulations are used to validate a multiphase Reynolds-stress turbulence model that correctly predicts the wall-normal distribution of the two-phase turbulence statistics. (C) 2016 AIP Publishing LLC.
机译:为了理解壁边界多相湍流的基本物理原理,进行了垂直通道中强耦合(即,高载荷)流体颗粒流动的模拟。给出了高载荷悬架的精确雷诺平均(RA)方程,并且首次在欧拉-拉格朗日(EL)框架中评估了在充分发展的水流中保留的未封闭项。当前工作中提出的RA公式与多相湍流模型的先前推导之间的关键区别是将粒子速度波动划分为空间相关和不相关的分量,用于定义粒子相湍动能(TKE)的分量和颗粒温度。自适应空间滤波技术是我们在先前的工作中为均匀流动而开发的[J. Capecelatro,O。Desjardins和R.O. Fox,“在簇诱导的湍流中碰撞粒子动力学的数值研究”,J。Fluid Mech。 [747,R2(2014)]显示可在距壁的所有距离处准确地划分粒子速度波动。观察到颗粒能的组分中强烈的偏析,与团簇有关的颗粒相TKE的最大值落在通道壁附近,而在通道中心观察到最大颗粒温度。发现雷诺应力的各向异性既靠近壁面又远离壁面,是理解粒子相体积分数分布的关键因素。在本文的第二部分中,EL模拟的结果用于验证多相雷诺应力湍流模型,该模型正确地预测了两相湍流统计量的壁正态分布。 (C)2016 AIP出版有限责任公司。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号