首页> 外文期刊>Physics of fluids >Particle transport and flow modification in planar temporally evolving laminar mixing layers. I. Particle transport under one-way coupling
【24h】

Particle transport and flow modification in planar temporally evolving laminar mixing layers. I. Particle transport under one-way coupling

机译:平面时间演化的层流混合层中的粒子传输和流变。一,单向耦合下的颗粒传输

获取原文
获取原文并翻译 | 示例
           

摘要

Simulations of two-dimensional, particle-laden mixing layers were performed for particles with Stokes numbers of 0.3, 0.6, 1, and 2 under the assumption of one-way coupling using the Eulerian-Lagrangian method; two-way coupling is addressed in Part II. Analysis of interphase momentum transfer was performed in the Eulerian frame of reference by looking at the balance of fluid-phase mean momentum, mean kinetic energy, modal kinetic energy, and particle-phase mean momentum. The differences in the dominant mechanisms of vertical transport of streamwise momentum between the fluid and particle phases is clearly brought out. In the fluid phase, growth of the mixing layer is due to energy transfer from the mean flow to the unstable Kelvin-Helmholtz modes, and transport of mean momentum by these modes. In contrast, in the particle phase, the primary mechanism of vertical transport of streamwise momentum is convection due to the mean vertical velocity induced by the centrifuging of particles by the spanwise Kelvin-Helmholtz vortices. Although the drag force and the particle-phase modal stress play an important role in the early stages of the evolution of the mixing layer, their role is shown to decrease during the pairing process. After pairing, the particle-phase mean streamwise momentum balance is accounted for by the convection and drag force term. The particle-phase modal stress term is shown to be strongly connected to the fluid phase modal stress with a Stokes-number-dependent time lag in its evolution. (c) 2006 American Institute of Physics.
机译:在使用欧拉-拉格朗日方法进行单向耦合的假设下,对斯托克斯数为0.3、0.6、1和2的粒子进行了二维,充满粒子的混合层的模拟;第二部分讨论了双向耦合。通过观察流体相平均动量,平均动能,模态动能和颗粒相平均动量之间的平衡,在欧拉基准框架内对相间动量传递进行了分析。流体相和颗粒相之间的垂直流向动量传输的主要机理的差异被清楚地指出。在液相中,混合层的增长是由于能量从平均流转移到不稳定的Kelvin-Helmholtz模式,以及这些模式在平均动量上的传递。相反,在粒子相中,由于沿翼展方向的开尔文-亥姆霍兹涡流将粒子离心所引起的平均垂直速度,流向动量的垂直传输的主要机理是对流。尽管拖曳力和颗粒相模态应力在混合层演变的早期阶段起着重要作用,但在配对过程中它们的作用已降低。配对后,对流和阻力项解释了颗粒相平均流向动量平衡。粒子相模态应力项与斯托克斯数相关的时滞与流体模态应力密切相关。 (c)2006年美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号