首页> 外文期刊>Physics of fluids >The Rayleigh-Taylor Instability driven by an accel-decel-accel profile
【24h】

The Rayleigh-Taylor Instability driven by an accel-decel-accel profile

机译:加速度-加速度-加速度曲线驱动的瑞利-泰勒不稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

We describe numerical simulations of the miscible Rayleigh-Taylor (RT) instability driven by a complex acceleration history, g(t), with initially destabilizing acceleration, g > 0, an intermediate stage of stabilizing deceleration, g < 0, and subsequent destabilizing acceleration, g > 0. Initial perturbations with both single wavenumber and a spectrum of wavenumbers (leading to a turbulent front) have been considered with these acceleration histories. We find in the single-mode case that the instability undergoes a so-called phase inversion during the first acceleration reversal from g > 0 to g < 0. If the zero-crossing of g(t) occurs once the instability growth has reached a state of nonlinear saturation, then hitherto rising bubbles and falling spikes reverse direction and collide, causing small-scale structures to emerge and enhancing molecular mixing in the interfacial region. Beyond the second stationary point of g(t) where once again g > 0, the horizontal mean density profile becomes RT-unstable and the interfacial region continues to enlarge. Secondary Kelvin-Helmholtz-unstable structures on the near-vertical sheared edges of the primary bubble have an Atwood-number-dependent influence on the primary RT growth rate. This Atwood number dependence appears to occur because secondary instabilities strongly promote mixing, but the formation of these secondary structures is suppressed at large density differences. For multi-mode initial perturbations, we have selected an initial interfacial amplitude distribution h0 (λ) that rapidly achieves a self-similar state during the initial g > 0 acceleration. The transition from g > 0 to g < 0 induces significant changes in the flow structure. As with the single-mode case, bubbles and spikes collide during phase inversion, though in this case the interfacial region is turbulent, and the region as a whole undergoes a period of enhanced structural breakdown. This is accompanied by a rapid increase in the rate of molecular mixing, and increasing isotropy within the region. During the final stage of g > 0 acceleration, self-similar RT mixing re-emerges, together with a return to anisotropy. We track several turbulent statistical quantities through this complex evolution, which we present as a resource for the validation and refinement of turbulent mix models.
机译:我们描述了由复杂的加速度历史g(t)驱动的可混溶瑞利泰勒(RT)不稳定性的数值模拟,其初始稳定加速度g> 0,稳定减速的中间阶段g <0,随后稳定不稳定,g>0。在这些加速度历史中,已经考虑了具有单个波数和波数谱(导致湍流前沿)的初始摄动。我们发现在单模情况下,在从g> 0到g <0的第一次加速度反转期间,不稳定性经历了所谓的相位反转。如果g(t)的过零发生在不稳定性增长达到a时,处于非线性饱和状态,然后迄今上升的气泡和下降的尖峰反向并发生碰撞,导致出现小规模结构并增强界面区域中的分子混合。超出g(t)的第二固定点(g再次为g> 0),水平平均密度曲线变得RT不稳定,界面区域继续扩大。初级气泡近垂直剪切边缘上的次级Kelvin-Helmholtz不稳定结构对初级RT的生长速率具有取决于Atwood数的影响。出现这种Atwood数依赖性的原因是,二级不稳定性强烈促进了混合,但是这些二级结构的形成在较大的密度差下受到抑制。对于多模式初始扰动,我们选择了初始界面振幅分布h0(λ),该初始界面振幅分布在初始g> 0加速期间迅速达到自相似状态。从g> 0到g <0的过渡引起流动结构的重大变化。与单模情况一样,尽管在这种情况下界面区域是湍流的,但气泡和尖峰在相转化过程中会发生碰撞,整个区域都会经历一段时间的结构破坏。这伴随着分子混合速率的快速增加,以及该区域内各向同性的增加。在g> 0加速的最后阶段,自相似的RT混合重新出现,并返回到各向异性。我们通过这种复杂的演变过程跟踪了几个湍流统计量,我们将其作为验证和完善湍流混合模型的资源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号