...
首页> 外文期刊>Physical Review, A. Atomic, molecular, and optical physics >Solution of the Holstein equation of radiation trapping by the geometrical quantization technique. III. Partial frequency redistribution with Doppler broadening - art. no. 042703
【24h】

Solution of the Holstein equation of radiation trapping by the geometrical quantization technique. III. Partial frequency redistribution with Doppler broadening - art. no. 042703

机译:用几何量化技术求解辐射俘获的荷斯坦方程。三,多普勒展宽导致部分频率重新分配-艺术。没有。 042703

获取原文
获取原文并翻译 | 示例
           

摘要

We introduce an analytical method to investigate radiation trapping problems with Doppler frequency redistribution. The problem is formulated within the framework of the Holstein-Biberman-Payne equation. We interpret the basic integro-differential trapping equation as a generalized wave equation for a four-dimensional (4D) classical system (an associated quasiparticle). We then construct its analytical solution by a semiclassical approach, called the geometrical quantization technique (GQT). Within the GQT, it is shown that the spatial and frequency variables can be separated and that the frequency part of the excited atom distribution function obeys a stationary Schrodinger equation for a perturbed oscillator. We demonstrate that there is a noticeable deviation of the actual spectral emission profile from the Doppler line in the region of small opacities. The problem of calculating the spatial mode structure and the effective radiation trapping factors is reduced to the evaluation of wave functions and quantized energy values of the quasiparticle confined in the vapor cell. We formulate the quantization rules and derive the phase factors, which allow us to obtain analytically the complete spectrum of the trapping factors in 1D geometries (layer, cylinder, sphere) and other (2D and 3D) geometries when the separation of space variables is possible. Finally, we outline a possible extension of our method to treat radiation trapping effects for more general experimental situations including, for instance, a system of cold atoms. [References: 36]
机译:我们介绍一种分析方法,以研究多普勒频率重新分布引起的辐射捕获问题。该问题是在Holstein-Biberman-Payne方程的框架内提出的。我们将基本积分微分俘获方程解释为四维(4D)经典系统(相关的准粒子)的广义波动方程。然后,我们通过称为几何量化技术(GQT)的半经典方法构造其分析解决方案。在GQT中,表明空间和频率变量可以分开,并且激发原子分布函数的频率部分服从于扰动振荡器的平稳薛定inger方程。我们证明在小混浊区域中,实际的光谱发射轮廓与多普勒谱线有明显的偏差。计算空间模态结构和有效辐射俘获因子的问题被简化为对波函数的评估以及限制在蒸气室中的准粒子的量化能量值。我们制定量化规则并导出相位因子,当可以分离空间变量时,它们使我们能够分析性地获得一维几何形状(层,圆柱,球体)和其他(2D和3D)几何形状中捕获因子的完整谱。最后,我们概述了在更一般的实验情况下(例如,冷原子系统)治疗放射线捕获效应的方法的可能扩展。 [参考:36]

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号