...
首页> 外文期刊>Chemical engineering journal >Simulations and optimization of combined Fe- and Cu-zeolite SCR monolith catalysts
【24h】

Simulations and optimization of combined Fe- and Cu-zeolite SCR monolith catalysts

机译:Fe-Cu-Cu沸石SCR整体式催化剂的模拟与优化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Cu-based SCR catalysts exhibit higher activity at lower temperatures (<350 degrees C) while Fe-based catalysts are more active at higher temperatures under "standard" SCR condition (NH3 + NO + O-2). The combination of Fe- and Cu-based SCR catalysts provides a viable solution to expand the temperature window of high NOx conversion. A simulation study of combined Fe/Cu SCR catalyst is carried to: (i) compare the performance of the dual-layer and dual-brick catalysts for different proportions of Fe- and Cu-zeolite catalysts, (ii) identify the optimal catalyst (washcoat) loadings of individual components in each configuration, and (iii) identify the superior design. The simulations show that there is an optimal fraction of Fe and Cu loadings in the combined systems. The optimal fraction of the Fe-zeolite washcoat in the dual-layer catalyst is lower than that in the dual-brick design. It is shown that the dual-brick configuration gives a higher overall NO conversion performance for most conditions. The main cause for the inferior performance of the dual-layer catalyst is the diffusional limitation that lowers the NO conversion at intermediate temperatures. In this temperature range the Cu-SCR catalyst is more active than the Fe-SCR catalyst, so diffusional limitations are more severe for the Cu catalyst. As a result, the Fe-SCR top layer in the dual-layer architecture creates an additional barrier, lowering the apparent activity of the Cu-SCR. Because the activity of the combined system is largely contributed by Cu-SCR at intermediate temperatures, the NO conversion of the combined system is lowered. This performance decrease due to the addition of the Fe-SCR layer overshadows its benefits at higher temperatures. In the dual-brick configuration, this adverse effect due to diffusional resistance is not as detrimental. (C) 2014 Elsevier B.V. All rights reserved.
机译:铜基SCR催化剂在较低温度(<350摄氏度)下表现出更高的活性,而铁基催化剂在“标准” SCR条件(NH3 + NO + O-2)下在较高温度下表现出更高的活性。铁基和铜基SCR催化剂的组合提供了一种可行的解决方案,可以扩大高NOx转化的温度范围。对组合的Fe / Cu SCR催化剂进行了模拟研究以:(i)比较双层和双砖催化剂对不同比例的Fe和Cu沸石催化剂的性能,(ii)确定最佳催化剂(涂层)在每种配置中单个组件的载荷,并且(iii)确定了卓越的设计。仿真表明,在组合系统中,Fe和Cu的负载量最佳。双层催化剂中铁沸石载体涂层的最佳比例低于双砖设计。结果表明,双砖结构在大多数情况下均具有更高的整体NO转化性能。双层催化剂性能差的主要原因是扩散限制,其降低了中间温度下的NO转化率。在此温度范围内,Cu-SCR催化剂比Fe-SCR催化剂更具活性,因此对于Cu催化剂而言,扩散限制更为严格。结果,双层体系结构中的Fe-SCR顶层会产生附加的势垒​​,从而降低Cu-SCR的表观活性。因为在中温下Cu-SCR大大地影响了组合系统的活性,所以降低了组合系统的NO转化率。由于添加了Fe-SCR层而导致性能下降,从而使其在高温下的优势黯然失色。在双砖构型中,由于扩散阻力引起的不利影响不那么有害。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号