首页> 外文期刊>Physiologia plantarum >Non-photochemical loss in PSII in high- and low-light-grown leaves of Vicia faba quantified by several fluorescence parameters including L-NP, F-0/F-m', a novel parameter
【24h】

Non-photochemical loss in PSII in high- and low-light-grown leaves of Vicia faba quantified by several fluorescence parameters including L-NP, F-0/F-m', a novel parameter

机译:通过几个荧光参数,包括新参数L-NP,F-0 / F-m',定量测定了蚕豆高光和弱光叶片中PSII的非光化学损失

获取原文
获取原文并翻译 | 示例
           

摘要

Using the expression of fluorescence originated from the PSII open reaction center in the light by Oxborough and Baker (1997), we obtained a formula that expresses relationships between the quantum efficiency of PSII photochemistry in the dark (Phi(m) = F-v/F-m) and in the light Phi(m)'=F-v'/F-m': Phi(m)'=Phi(m)+L-NP, where L-NP(=F-0/F-m') denotes the quantum yield of light induced non-photochemical losses (heat dissipation and fluorescence de-excitation) in PSII. Using L-NP and other conventional fluorescence parameters, we conducted quenching analyses with leaves of broad bean plants (Vicia faba L.) grown at 700 (high light; HL) and 80 mu mol photons m(-2) s(-1) (low light; LL). We also examined whether behavior of q(0) quenching (q(0) = 1-F-0'/F-0) is related to the reaction center quenching. Whwn the actin light (AL) was strong, Stern-Volmer quenching [NPQ=(F-m-F-m'/F-m'] and L-NP increased rapidly and then decreased slowly in HL leaves, while, in LL leaves, they increased slowly. It is probable that rapid formation of a large proton gradient was responsible for sharp rises in both parameters in HL leaves. The steady-state 'excess' parameter [Phi(Ex) = (1 - qP) Phi(m)/(Phi(m) + L-NP)], fraction of energy migrating to closed PSII centers, increased with the photon flux density of AL in LL leaves. In contrast, in HL leaves, Phi(Ex) did not increase markedly. The examination of the relationship between Phi(Ex) and L-NP obtained at various AL revealed that in LL leaves the increase in (1 - qP) with the increase in AL prevailed, while, in HL leaves, the increase in L-NP suppressed the increase in (1 - qP). Using the difference between L-NP and L-D (Phi(ND) = L-NP- L-D, where L-D = F-0/F-m), q(0) and qN (= 1-F-v'/F-v) were calculated without using measured F-0'. The relationships between q(0) and qN thus obtained for various AL levels were almost identical for both HL and LL leaves, implying no difference in the fluorescence origin between the HL and LL leaves. Usefulness of these equations expressing non-photochemical loss is discussed.
机译:使用Oxborough和Baker(1997)在光中源自PSII开放反应中心的荧光表达,我们获得了一个公式,该公式表达了PSII光化学在黑暗中的量子效率之间的关系(Phi(m)= Fv / Fm)并根据Phi(m)'= F-v'/ F-m':Phi(m)'= Phi(m)+ L-NP,其中L-NP(= F-0 / F-m')表示PSII中光引起的非光化学损失(散热和荧光去激发)的量子产率。使用L-NP和其他常规荧光参数,我们对生长在700(强光; HL)和80μmol光子m(-2)s(-1)下的蚕豆植物(Vicia faba L.)的叶片进行淬灭分析。 (弱光; LL)。我们还检查了q(0)猝灭的行为(q(0)= 1-F-0'/ F-0)是否与反应中心猝灭有关。肌动蛋白光(AL)较强时,斯特林-沃尔默猝灭[NPQ =(FmF-m'/ F-m']和L-NP在HL叶片中迅速增加,然后缓慢降低,而在LL叶片中则增加稳定的“过量”参数[Phi(Ex)=(1-qP)Phi(m)/( Phi(m)+ L-NP)],迁移到封闭PSII中心的能量比例随LL叶片中AL的光子通量密度的增加而增加,相反,在HL叶片中,Phi(Ex)并未显着增加。在不同AL下获得的Phi(Ex)与L-NP之间的关系的结果表明,LL叶片中(1-qP)的增加随AL的增加而占优势,而HL叶片中L-NP的增加抑制了增加(1-qP)。使用L-NP和LD之差(Phi(ND)= L-NP-LD,其中LD = F-0 / Fm),q(0)和qN(= 1-F -v'/ Fv)的计算而不使用测得的F-0'。由此获得的各种AL水平的q(0)和qN之间的s对于HL和LL叶片几乎相同,这意味着HL和LL叶片之间的荧光来源没有差异。讨论了表达非光化学损失的这些方程的有用性。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号