首页> 外文期刊>Chemical engineering journal >Microwave-induced cracking and CO2 reforming of toluene on biomass derived char
【24h】

Microwave-induced cracking and CO2 reforming of toluene on biomass derived char

机译:微波诱导的生物质焦炭上甲苯的裂解和CO2重整

获取原文
获取原文并翻译 | 示例
           

摘要

The objective of this work was to investigate the ability of char from biomass microwave pyrolysis at 800 degrees C for tar removal, using toluene as the model compound. The experiments were conducted in a fixed bed with microwave heating and electrical heating, respectively. Carbon weight in biomass char was calculated after the experiments, and the chars were characterized by Brunauer-Emmett-Teller (BET) analysis and Scanning Electron Microscope (SEM) measurement. The results indicated that microwave heating had a promoting effect on toluene conversion. With the temperature increasing to 750 degrees C, cracking conversion and hydrogen selectivity rose respectively to 92.77% and 91.74%. CO2 reforming of toluene was effective to produce more syngas. An optimum CO2 flow rate, i.e., 80 mL min(-1), was existed under microwave heating. In this case, toluene conversion reached a maximum of 92.03%, and the syngas yield also increased to 91.03%. The ratios of H-2/CO exhibited a substantial reduction with increasing CO2 flow rate. At CO2 flow rate of 100 mL min(-1), the ratio approached stoichiometric ratio in reforming reaction, and the ratio further reduced to 0.22 at CO2 flow rate of 120 mL min(-1). Toluene reforming displayed a relative stable performance for the conversion of toluene, since the existence of CO2 efficiently relieved biomass char deactivation. Toluene reforming conversion retained at about 86% in a time range of 20-140 min. Carbon gasification during the reforming reaction possessed a resistance to carbon deposition, but it simultaneously caused carbon loss in biomass char. The most serious weight-loss ratio was 5.42% in this work, obtained at CO2 flow rate of 120 mL min(-1). The consumed carbons were gasified into part of syngas production and provided the biggest contribution of 15.4% to final syngas production. (c) 2015 Elsevier B.V. All rights reserved.
机译:这项工作的目的是研究使用甲苯作为模型化合物,在800摄氏度的生物质微波热解过程中焦炭去除焦油的能力。实验分别在固定床中进行,分别采用微波加热和电加热。实验后计算生物质炭中的碳重量,并通过Brunauer-Emmett-Teller(BET)分析和扫描电子显微镜(SEM)测量对炭进行表征。结果表明,微波加热对甲苯的转化有促进作用。随着温度升高至750℃,裂化转化率和氢选择性分别上升至92.77%和91.74%。甲苯的CO2重整可有效生产更多合成气。在微波加热下,存在最佳的CO2流速,即80 mL min(-1)。在这种情况下,甲苯转化率最高达到92.03%,合成气收率也提高到91.03%。 H-2 / CO的比例随着CO2流量的增加而显着降低。在CO2流速为100 mL min(-1)时,该比率接近重整反应的化学计量比,在CO2流速为120 mL min(-1)时,该比率进一步降低至0.22。甲苯重整对于甲苯的转化表现出相对稳定的性能,因为二氧化碳的存在有效地缓解了生物质炭的失活。甲苯重整转化率在20-140分钟的时间内保持在约86%。重整反应期间的碳气化具有抗碳沉积的能力,但同时导致生物质炭中的碳损失。在这项工作中,最严重的失重率为5.42%,是在120 mL min(-1)的CO2流速下获得的。消耗的碳被气化为合成气生产的一部分,对最终合成气生产的贡献最大为15.4%。 (c)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号