...
首页> 外文期刊>Chemical engineering journal >Effect of accelerated carbonation on AOD stainless steel slag for its valorisation as a CO2-sequestering construction material
【24h】

Effect of accelerated carbonation on AOD stainless steel slag for its valorisation as a CO2-sequestering construction material

机译:加速碳化对AOD不锈钢炉渣作为二氧化碳封存建筑材料的价值评估

获取原文
获取原文并翻译 | 示例
           

摘要

Non-stabilized Argon Oxygen Decarburisation (AODNS) slag in powdered form was examined for its carbon dioxide sequestration capacity and for its potential utilisation in the fabrication of high value building materials. The curing of the sample was carried out in two accelerated carbonation environments: (i) in a carbonation chamber, maintained at atmospheric pressure, 22 °C, 5 vol.% CO2 and 80% RH; and (ii) in a carbonation reactor, where the CO2 partial pressure (pCO2) and temperature could be further increased. In the carbonation chamber, an average compressive strength of over 20 MPa, on a 64 cm3 cubic specimen, was obtained after one week of curing, which is sufficient for many construction applications. Further carbonation resulted in a linear increase of strength up ~30 MPa after three weeks. The CO2 uptake followed a similar trend, reaching a maximum of 4.3 wt.%. In the reactor, the compressive strength improved with an increase in pCO2 up to 8 bar, temperature up to 80 °C, and duration up to 15 h where the maximum CO2 uptake was 8.1 wt.%. The reduction in porosity in the carbonated specimens was approximately in line with the strength gain in the samples. Phase analysis by X-ray powder diffraction and inspection by scanning electron microscopy showed the precipitation of calcite and formation of significant amounts of amorphous material after carbonation. Infrared spectroscopy also pointed to the presence of aragonite and vaterite. In the carbonation chamber, the calcite morphology was uniform throughout the specimen. In the reactor, however, the calcite crystals near the outer edges of the cubes had different morphology than those near the core. Carbonation of the slag resulted in the reduction of basicity by up to one pH unit, and contributed to controlling the leaching of several heavy metals and metalloids.
机译:研究了粉末形式的非稳定氩氧脱碳(AODNS)炉渣的二氧化碳吸收能力以及其在制造高价值建筑材料中的潜在用途。样品的固化在两个加速的碳酸化环境中进行:(i)在一个碳酸化室中,保持在大气压,22°C,5 vol。%的CO2和80%RH下; (ii)在碳酸化反应器中,可以进一步提高CO 2分压(pCO 2)和温度。在碳化室中,固化一周后,在64 cm3立方试样上获得的平均抗压强度超过20 MPa,这足以用于许多建筑应用。三周后,进一步的碳化导致强度线性增加,达到〜30 MPa。二氧化碳吸收遵循类似趋势,最高达到4.3 wt。%。在反应器中,抗压强度随着pCO2的增加而提高,最高可达8 bar,温度高达80°C,持续时间长达15 h,其中最大的CO2吸收率为8.1 wt。%。碳酸化样品中孔隙率的降低与样品中强度的增加大致相符。通过X射线粉末衍射的相分析和通过扫描电子显微镜的检查显示,碳化后方解石沉淀并形成大量的非晶态材料。红外光谱还指出存在文石和球ate石。在碳化室内,方解石的形态在整个样品中是均匀的。然而,在反应堆中,立方体外缘附近的方解石晶体与核附近的方解石晶体具有不同的形态。炉渣的碳酸化导致碱度降低多达一个pH单位,并有助于控制多种重金属和准金属的浸出。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号