...
首页> 外文期刊>IEEE transactions on wireless communications >Wireless Communication Using Unmanned Aerial Vehicles (UAVs): Optimal Transport Theory for Hover Time Optimization
【24h】

Wireless Communication Using Unmanned Aerial Vehicles (UAVs): Optimal Transport Theory for Hover Time Optimization

机译:使用无人机的无线通信:悬停时间优化的最优运输理论

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, the effective use of flight-time constrained unmanned aerial vehicles (UAVs) as flying base stations that provide wireless service to ground users is investigated. In particular, a novel framework for optimizing the performance of such UAV-based wireless systems in terms of the average number of bits (data service) transmitted to users as well as the UAVs' hover duration (i.e. flight time) is proposed. In the considered model, UAVs hover over a given geographical area to serve ground users that are distributed within the area based on an arbitrary spatial distribution function. In this case, two practical scenarios are considered. In the first scenario, based on the maximum possible hover times of UAVs, the average data service delivered to the users under a fair resource allocation scheme is maximized by finding the optimal cell partitions associated to the UAVs. Using the powerful mathematical framework of optimal transport theory, this cell partitioning problem is proved to be equivalent to a convex optimization problem. Subsequently, a gradient-based algorithm is proposed for optimally partitioning the geographical area based on the users' distribution, hover times, and locations of the UAVs. In the second scenario, given the load requirements of ground users, the minimum average hover time that the UAVs need for completely servicing their ground users is derived. To this end, first, an optimal bandwidth allocation scheme for serving the users is proposed. Then, given this optimal bandwidth allocation, optimal cell partitions associated with the UAVs are derived by exploiting the optimal transport theory. Simulation results show that our proposed cell partitioning approach leads to a significantly higher fairness among the users compared with the classical weighted Voronoi diagram. Furthermore, the results demonstrate that the average hover time of the UAVs can be reduced by 64% by adopting the proposed optimal bandwidth allocation scheme as well as the optimal cell partitioning approach. In addition, our results reveal an inherent tradeoff between the hover time of UAVs and bandwidth efficiency while serving the ground users.
机译:在本文中,研究了飞行时间受限的无人飞行器(UAV)作为向地面用户提供无线服务的飞行基站的有效利用。特别地,提出了一种新颖的框架,用于根据发送给用户的平均比特数(数据服务)以及UAV的悬停持续时间(即飞行时间)来优化这种基于UAV的无线系统的性能。在考虑的模型中,无人机将悬停在给定的地理区域上,以服务于基于任意空间分布函数在该区域内分布的地面用户。在这种情况下,将考虑两个实际方案。在第一种情况下,基于无人飞行器的最大可能悬停时间,通过找到与无人飞行器相关联的最佳小区分区,在公平资源分配方案下交付给用户的平均数据服务将最大化。使用最优输运理论的强大数学框架,该单元划分问题被证明等效于凸优化问题。随后,提出了一种基于梯度的算法,用于根据用户的分布,悬停时间和无人机的位置对地理区域进行最佳划分。在第二种情况下,考虑到地面用户的负载要求,得出了无人机为地面用户提供全面服务所需的最小平均悬停时间。为此,首先,提出了一种用于服务用户的最佳带宽分配方案。然后,在给定最佳带宽分配的情况下,通过利用最佳传输理论来推导与UAV相关的最佳小区划分。仿真结果表明,与经典加权Voronoi图相比,我们提出的小区划分方法可显着提高用户之间的公平性。此外,结果表明,采用建议的最佳带宽分配方案以及最佳小区划分方法,可使无人机的平均悬停时间减少64%。此外,我们的结果表明,在为地面用户服务时,无人机的悬停时间与带宽效率之间存在着固有的权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号