首页> 外文期刊>Wildlife Research >Home-range estimation within complex restricted environments: importance of method selection in detecting seasonal change
【24h】

Home-range estimation within complex restricted environments: importance of method selection in detecting seasonal change

机译:在复杂的受限环境中进行家庭范围估计:方法选择在检测季节变化中的重要性

获取原文
获取原文并翻译 | 示例
           

摘要

Estimating the home ranges of animals from telemetry data can provide vital information on their spatial behaviour, which can be applied by managers to a wide range of situations including reserve design, habitat management and interactions between native and non-native species. Methods used to estimate home ranges of animals in spatially restricted environments (e.g. rivers) are liable to overestimate areas and underestimate travel distances by including unusable habitat (e.g. river bank). Currently, few studies that collect telemetry data from species in restricted environments maximise the information that can be gathered by using the most appropriate home-range estimation techniques. Simulated location datasets as well as radio-fix data from 23 northern pike (Esox lucius) were used to examine the efficiency of home-range and travel estimators, with and without correction for unusable habitat, for detecting seasonal changes in movements. Cluster analysis most clearly demonstrated changes in range area between seasons for empirical data, also showing changes in patchiness, and was least affected by unusable-environment error. Kernel analysis showed seasonal variation in range area more clearly than peripheral polygons or ellipses. Range span, a linear estimator of home range, had no significant seasonal variation. Results from all range area estimators were smallest in autumn, when cores were least fragmented and interlocation movements smallest. Cluster analysis showed that core ranges were largest and most fragmented in summer, when interlocation distances were most variable, whereas excursion-sensitive methods (e.g. kernels) recorded the largest outlines in spring, when interlocation distances were largest. Our results provide a rationale for a priori selection of home-range estimators in restricted environments. Contours containing 95% of the location density defined by kernel analyses better reflected excursive activity than ellipses or peripheral polygons, whereas cluster analyses better defined range cores in usable habitat and indicate range fragmentation.
机译:根据遥测数据估算动物的居所范围可以提供有关其空间行为的重要信息,管理者可以将其应用于各种情况,包括保护区设计,栖息地管理以及本地物种与非本地物种之间的相互作用。在空间受限的环境中(例如河流)估算动物栖息地的方法可能会由于包括不可用的栖息地(例如河岸)而高估了面积,并低估了行进距离。当前,很少有研究在有限的环境中从物种收集遥测数据,从而可以通过使用最合适的家庭范围估计技术来最大化收集的信息。模拟的位置数据集以及来自23个北部派克(Esox lucius)的无线电定位数据被用于检查房屋范围和旅行估算器的效率,以及是否对无法使用的栖息地进行校正,以检测运动的季节性变化。聚类分析最清楚地显示了经验数据在季节之间的范围区域的变化,也显示了斑块的变化,并且受不可使用的环境误差影响最小。内核分析显示,范围区域的季节性变化比外围多边形或椭圆形更清楚。范围范围是家庭范围的线性估计,没有明显的季节性变化。在秋季,所有射程面积估计量的结果最小,而岩心碎裂最少,位错运动最小。聚类分析表明,当交配距离变化最大时,夏季的核心范围最大,并且碎片最多,而当交插距离最大时,偏移敏感的方法(例如,内核)记录的春季轮廓最大。我们的结果为在受限环境中优先选择家庭范围估计量提供了依据。包含95%的由内核定义的位置密度的轮廓比椭圆或外围多边形更好地反映了偏移活动,而聚类分析在可用栖息地中更好地定义了范围核心并指示范围碎片。

著录项

  • 来源
    《Wildlife Research》 |2009年第3期|p.213-224|共12页
  • 作者单位

    A Centre for Ecology and Hydrology, Winfrith Technology Centre, Dorchester, Dorset, DT2 8ZD, UK. B University of Durham, School of Biological and Biomedical Sciences, Science Laboratories, South Road, Durham, DH1 3LE, UK. C Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. D Anatrack Ltd, Furzebrook, Wareham, Dorset, BH20 5AX, UK. E School of Conservation Sciences, Bournemouth University, Talbot Campus, Fern Barrow, Poole, Dorset, BH12 5BB, UK. F Centre for Ecology and Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, OX10 8BB, UK. G Corresponding author. Email: carolyn.knight@niva.no;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号