...
首页> 外文期刊>Water resources research >Evaluating a Coupled Phenology-Surface Energy Balance Model to Understand Stream-Subsurface Temperature Dynamics in a Mixed-Use Farmland Catchment
【24h】

Evaluating a Coupled Phenology-Surface Energy Balance Model to Understand Stream-Subsurface Temperature Dynamics in a Mixed-Use Farmland Catchment

机译:评估物候-地表能量平衡耦合模型,以了解混合使用农田汇水区的地下流温度动态

获取原文
获取原文并翻译 | 示例
           

摘要

Stream temperature is a key variable that controls both physical and biogeochemical processes in aquatic ecosystems. Complex physical interactions between land surface and subsurface processes make accurate simulations of stream temperature dynamics at catchment scales a challenging task. In this study we propose an integrated, catchment-scale framework to model stream, soil, streambed, and groundwater temperatures under the influence of hydrologic and vegetation dynamics in a mixed land use catchment in central England. The phenology and surface energy modules in the coupled model were used to quantify the impacts of vegetation processes on radiation fluxes (e.g., canopy shading and the effect of vegetation growth on optical parameters). The model enabled accurate simulations of the movement and partitioning of water and thermal fluxes in different hydrologic domains with R-2 values of observed and simulated temperatures in the range 0.60-0.87. Simulated groundwater heads and stream stages allowed the identification of gaining and losing portions of stream reaches and the estimation of Darcy fluxes. Simulation results show significantly dampened diel streambed temperature fluctuations below 0.3m in gaining reaches, while in losing reaches the diel fluctuations showed relatively strong fluctuations below 0.3m. The model enabled evaluation of the relative contributions of different processes to the stream thermal budget. Results indicate that net radiation was the dominant heat source, while latent heat flux was the primary heat sink. The model provides a useful tool to explicitly simulate water and heat fluxes as well as temperature-dependent reaction rates in biogeochemical analyses.
机译:溪流温度是控制水生生态系统中物理和生物地球化学过程的关键变量。陆地表面和地下过程之间复杂的物理相互作用使得在集水区尺度上精确模拟水流温度动态成为一项艰巨的任务。在这项研究中,我们提出了一个集水规模尺度的综合框架,以模拟英格兰中部混合土地利用集水区中水文和植被动态影响下的河流,土壤,河床和地下水温度。耦合模型中的物候学和表面能模块用于量化植被过程对辐射通量的影响(例如,冠层阴影和植被生长对光学参数的影响)。该模型可以在0.60-0.87范围内的观测温度和模拟温度的R-2值下,精确模拟不同水文域中水和热通量的运动和分配。模拟的地下水头和水流阶段可以识别出河段的得失部分和达西通量。仿真结果表明,在到达河段,低于0.3m的diel流床温度波动明显减弱,而在到达河段时,低于0.3m的diel波动表现出较强的波动。该模型能够评估不同过程对流热预算的相对贡献。结果表明,净辐射是主要的热源,而潜热通量是主要的散热器。该模型提供了一个有用的工具,可以在生物地球化学分析中明确模拟水和热通量以及与温度有关的反应速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号