...
首页> 外文期刊>Water resources research >Hydrologic and geomorphic controls on hyporheic exchange during base flow recession in a headwater mountain stream
【24h】

Hydrologic and geomorphic controls on hyporheic exchange during base flow recession in a headwater mountain stream

机译:水源和地貌控制对上游水源山流基流退缩过程中流变交换的影响

获取原文
获取原文并翻译 | 示例

摘要

Hyporheic hydrodynamics are a control on stream ecosystems, yet we lack a thorough understanding of catchment controls on these flow paths, including valley constraint and hydraulic gradients in the valley bottom. We performed four whole-stream solute tracer injections under steady state flow conditions at the H. J. Andrews Experimental Forest (Oregon, United States) and collected electrical resistivity (ER) imaging to directly quantify the 2-D spatial extent of hyporheic exchange through seasonal base flow recession. ER images provide spatially distributed information that is unavailable for stream solute transport modeling studies from monitoring wells alone. The lateral and vertical extent of the hyporheic zone was quantified using both ER images and spatial moment analysis. Results oppose the common conceptual model of hyporheic "compression" by increased lateral hydraulic gradients toward the stream. We found that the extent of the hyporheic zone increased with decreasing vertical gradients away from the stream, in contrast to expectations from conceptual models. Increasing hyporheic extent was observed with both increasing and decreasing down-valley (i.e., parallel to the valley gradient) and cross-valley (i.e., from the hillslope to the stream, perpendicular to the valley gradient) hydraulic gradients. We conclude that neither cross-valley nor down-valley hydraulic gradients are sufficient predictors of hyporheic exchange flux nor flow path network extent. Increased knowledge of the controls on hyporheic exchange, the temporal dynamics of exchange flow paths, and their the spatial distribution is the first step toward predicting hyporheic exchange at the scale of individual flow paths. Future studies need to more carefully consider interactions between spatiotemporally dynamic hydraulic gradients and subsurface architecture as controls on hyporheic exchange.
机译:亲水流体动力学是对河流生态系统的控制,但我们对这些流径的集水控制缺乏透彻的了解,包括谷底约束和谷底水力梯度。我们在HJ安德鲁斯实验森林(美国俄勒冈州)的稳态流动条件下进行了四次全流溶质示踪剂注入,并收集了电阻率(ER)成像,以通过季节性基流直接量化二维交换的二维空间范围经济衰退。 ER图像提供了空间分布的信息,仅靠监测井就无法进行流溶质运移建模研究。使用ER图像和空间矩分析来量化流变带的横向和垂直范围。结果与朝向水流的横向水力梯度增大相反,反对流线型“压缩”的通用概念模型。我们发现,与概念模型的预期相反,流变带的范围随着远离流的垂直梯度的减小而增加。在下谷(即平行于山谷梯度)和跨谷(即从山坡到河流,垂直于谷梯度)的水力梯度增加和减少的情况下,观察到的流变程度增加。我们得出的结论是,跨谷和下谷的水力梯度都不是流变交换通量或流路网络范围的充分预测因子。对流变交换控制,交换流路的时间动态及其空间分布的了解的增加,是在单个流路规模上预测流变交换的第一步。未来的研究需要更仔细地考虑时空动态水力梯度和地下构造之间的相互作用,以控制水流交换。

著录项

  • 来源
    《Water resources research》 |2012年第4期|p.W04513.1-W04513.20|共20页
  • 作者单位

    Department of Civil and Environmental Engineering, Pennsylvania State University, 202 Sackett Bldg., University Park,PA 16802, USA,Department of Geoscience, University of Iowa, 121 Trow-bridge Hall, Iowa City, IA 52242, USA;

    Department of Geosciences, Pennsylvania State University, 505 Deike Bldg., University Park, PA 16802, USA;

    Department of Civil and Environmental Engineering, Pennsylvania State University, 202 Sackett Bldg., University Park,PA 16802, USA;

    Department of Civil and Environmental Engineering, Pennsylvania State University, 202 Sackett Bldg., University Park,PA 16802, USA;

    Lancaster Environment Centre, Lancaster University, Lancaster LAI 4YQ, UK;

    Department of Geosciences, Pennsylvania State University, 505 Deike Bldg., University Park, PA 16802, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号