...
首页> 外文期刊>Water resources research >A method to calculate heterogeneous evapotranspiration using submeter thermal infrared imagery coupled to a stomatal resistance submodel
【24h】

A method to calculate heterogeneous evapotranspiration using submeter thermal infrared imagery coupled to a stomatal resistance submodel

机译:一种使用亚表热红外图像结合气孔阻力子模型计算非均质蒸散量的方法

获取原文
获取原文并翻译 | 示例
           

摘要

Thermal infrared (TIR) remote sensing of vegetation temperature, combined with surface energy balance modeling, allows efficient estimation of spatially distributed evapotranspiration (ET). Many ET models are sensitive to the parameterization of stomatal control; yet, modelers often employ spatially uniform stomatal resistance values, even in distributed applications. Unfortunately, assuming uniform resistance across a canopy with large temperature variance is physically unrealistic and may produce artifacts in ET magnitude. To account for spatial variations in stomatal control that likely accompany temperature variations, we propose nesting a new submodel within some well-established ET models. The submodel derives, for the canopy patch of interest, a concave-downward relationship between stomatal conductance and temperature, as expected from plant biology. Using the submodel, each pixel's contribution to the total canopy patch ET is influenced both by its observed temperature and by its location-specific estimated stomatal resistance. The submodel requires only one more parameter than the unmodified ET models, which can be obtained from the literature; it conserves energy between the pixel and image scales, unlike single-valued resistance approaches; it produces realistic ET values at extreme temperature locations; and provides a remote sensing-based way to estimate the in situ canopy stomatal conductance-temperature relationship, which otherwise must be measured under controlled conditions. Since very high-resolution TIR data provide one means to observe large temperature variance, the submodel was tested using data with cm-scale pixels collected over 1.5 m2 patches of two vegetation types. The biophysical relationships derived by the submodel were successfully verified against laboratory data.
机译:植被温度的热红外(TIR)遥感与表面能平衡建模相结合,可以有效地估算空间分布的蒸散量(ET)。许多ET模型对气孔控制的参数设置很敏感。然而,即使在分布式应用中,建模人员也经常采用空间均匀的气孔阻力值。不幸的是,假设具有较大温度变化的冠层上的电阻均匀,这在物理上是不现实的,并且可能会产生ET量级的伪影。为了解决气孔控制中可能伴随温度变化的空间变化,我们建议在一些公认的ET模型中嵌套一个新的子模型。该子模型为感兴趣的树冠斑块推导了气孔导度和温度之间的凹向下关系,这是植物生物学所期望的。使用该子模型,每个像素对总冠层斑块ET的贡献既受其观测温度的影响,又受其位置特定的估计气孔阻力的影响。与未经修改的ET模型相比,该子模型仅需要一个参数,后者可以从文献中获得。与单值电阻方法不同,它可以节省像素和图像比例尺之间的能量。在极端温度位置产生真实的ET值;并提供了一种基于遥感的方法来估算原地冠层气孔电导-温度关系,否则必须在受控条件下进行测量。由于非常高分辨率的TIR数据提供了一种观察较大温度变化的方法,因此使用在2种植被类型的1.5平方米斑块上收集的厘米级像素的数据对子模型进行了测试。由子模型导出的生物物理关系已针对实验室数据进行了成功验证。

著录项

  • 来源
    《Water resources research》 |2012年第1期|p.W01545.1-W01545.18|共18页
  • 作者单位

    Department of Environmental Earth System Science, Stanford University, MC 4216, 473 Via Ortega, Rm. 140,Stanford, CA 94305, USA;

    Department of Environmental Earth System Science, Stanford University, MC 4216, 473 Via Ortega, Rm. 140,Stanford, CA 94305, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号