...
首页> 外文期刊>Water resources research >Detailed river stage mapping and head gradient analysis during meander cutoff in a laboratory river
【24h】

Detailed river stage mapping and head gradient analysis during meander cutoff in a laboratory river

机译:实验室河道曲折截断期间的详细河段制图和水头梯度分析

获取原文
获取原文并翻译 | 示例
           

摘要

Analytical models of river evolution predict meander narrowing and elongation which creates sinuosity-driven hyporheic exchange across the meander neck, by decreasing flow distance and increasing head loss. We used a laboratory river table and close range photogrammetry to map and analyze sinuosity as a driver of head gradients and hyporheic exchange during cutoff. The river valley had relatively high slopes (1.8%) and moderately cohesive sediment (10% talc, 90% sand) to facilitate cutoff, and ratios of horizontal to vertical scaling were distorted to achieve dynamic similitude (Re = 3200). Incipient to cutoff, the head gradient across the neck increased due to a narrowing neck, upstream aggradation, and downstream degradation. Longitudinal and transverse river surface slopes around the meander bend increased as the meander approached cutoff. The steep head gradient across the moderately cohesive meander neck generated seepage erosion and scour that formed a low-sinuosity avulsion. Sediment-rich flow in the avulsed channel aggraded the downstream bed and separated the active channel and oxbow lake. The limitation in geometric and dynamic similitude in the river table limits extrapolation to natural rivers, yet river evolution may involve aggradation and degradation induced channel head loss and turnover hyporheic exchange as well as seepage-induced meander neck erosion. Our submillimeter maps of meander morphology and water stage provide data to parameterize river evolution and hyporheic exchange models, and may inform analysis and mapping of field sites.
机译:河流演变的分析模型预测河曲变窄和伸长,这会通过减小水流距离和增加水头损失而在河曲颈上产生由弯度驱动的水流交换。我们使用了实验室河床和近距离摄影测量法来绘制和分析弯曲度,以作为截止期间水头变化和水流交换的驱动力。该河谷的坡度相对较高(1.8%),沉积物的黏性适中(10%滑石粉,90%砂土)以利于截留,并且水平与垂直比例的比例被扭曲以实现动态相似性(Re = 3200)。刚开始切除时,由于颈部变窄,上游凝集和下游降解,导致整个颈部的头部梯度增加。随着弯道接近截止,弯道弯曲处的纵向和横向河面坡度增加。横跨中等粘性曲折脖子的陡峭的头部坡度会产生渗流侵蚀和冲刷作用,从而形成低弯曲度撕脱。假想河道中的富泥沙流使下游河床凝结,将活动河道和牛b湖分开。河床几何和动态相似性的局限性限制了对自然河流的外推,但是河流的演变可能涉及到凝结和退化,导致河床水头损失和周转水流交换,以及由渗漏引起的曲流脖子侵蚀。我们的曲折形态和水位亚毫米图提供了数据,可用于参数化河流演变和水流交换模型,并可能为野外站点的分析和制图提供依据。

著录项

  • 来源
    《Water resources research》 |2014年第2期|1689-1703|共15页
  • 作者单位

    Department of Environmental Resources Engineering, College of Environmental Science and Forestry, State University of New York, Syracuse, New York, USA,Now at Department of Geosciences, Boise State University, Boise, Idaho, USA;

    Department of Environmental Resources Engineering, College of Environmental Science and Forestry, State University of New York, Syracuse, New York, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号